Course Description
Random variables, discrete and continuous distributions, multiple random variables, distributions of functions of random variables, estimation, and hypothesis testing.

Text and Materials
Introduction to Mathematical Statistics by Hogg, McKean, and Craig, 7th edition AND R

Course Requirements
Homework, Exams, and Final Exam

Homework
Homework may be evaluated in one (or more) of the following ways: traditional turning in and grading, homework quizzes, and oral HW demonstrations.

Exams
Exams may be in-class, take-home, or a mixture of both formats.

Final Exam
The Final Exam shall be comprehensive. As such, it’s grade will replace the lowest of the previous three exams, provided that it is higher.

Grading Policy
The final average will be computed using the following weights:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>15%</td>
</tr>
<tr>
<td>Exams I – III</td>
<td>60%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>25%</td>
</tr>
</tbody>
</table>

Attendance Policy
Attendance/participation is expected.

Classroom Behavior
In addition to what is specified on the document under “Other,” please note that your behavior in the classroom must reflect a proper respect for others and self.

Other
Please see http://www2.sfasu.edu/math/docs/syllabi/MATH5350Syllabus.pdf for elements common to all sections.

Math Stat I Homework Assignments (Subject to Change)
<table>
<thead>
<tr>
<th>Section</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1, 2, 7, 8, 10, 12, 16</td>
</tr>
<tr>
<td>1.3</td>
<td>1-4, 6, 7, 9a, 10, 11, 13-16, 18, 21</td>
</tr>
<tr>
<td>1.4</td>
<td>2-6, 8, 9, 11, 12, 14, 17, 19, 20, 23, 24, 27, 30</td>
</tr>
<tr>
<td>1.5</td>
<td>1-6, 8</td>
</tr>
<tr>
<td>1.6</td>
<td>2, 7-9</td>
</tr>
<tr>
<td>1.7</td>
<td>1, 3, 6-9, 11ab, 12bc, 18, 20, 22-24</td>
</tr>
<tr>
<td>1.8</td>
<td>2-3, 5, 7, 8, 11</td>
</tr>
<tr>
<td>1.9</td>
<td>1, 3-5, 7, 8, 9, 14, 15, 18, 17, 22, 25, 26</td>
</tr>
<tr>
<td>1.10</td>
<td>1-3</td>
</tr>
<tr>
<td>2.1</td>
<td>1, 6-9, 12, 14, 16</td>
</tr>
<tr>
<td>2.2</td>
<td>1, 2, 4, 6</td>
</tr>
<tr>
<td>2.3</td>
<td>1-4, 9, 12</td>
</tr>
<tr>
<td>2.4</td>
<td>1, 3</td>
</tr>
<tr>
<td>2.5</td>
<td>1-3, 5, 9, 10, 13</td>
</tr>
<tr>
<td>2.6</td>
<td>3, 4, 7, 8, 9</td>
</tr>
<tr>
<td>2.8</td>
<td>1, 3, 5, 12</td>
</tr>
<tr>
<td>3.1</td>
<td>1, 3, 5, 9, 11, 13, 14, 16, 18, 22, 23, 25</td>
</tr>
<tr>
<td>3.2</td>
<td>1-3, 5, 8, 10, 14</td>
</tr>
<tr>
<td>3.3</td>
<td>1, 3, 6, 7, 11, 13, 18, 19b, 23, 24</td>
</tr>
<tr>
<td>3.4</td>
<td>2-4, 7, 10, 13, 18, 28, 30</td>
</tr>
<tr>
<td>3.5</td>
<td>2, 7</td>
</tr>
<tr>
<td>3.6</td>
<td>1, 2, 6, 8, 10, 12</td>
</tr>
<tr>
<td>4.1</td>
<td>1-3</td>
</tr>
<tr>
<td>4.2</td>
<td>1, 9, 10, 14, 21, 22, 23, 27</td>
</tr>
<tr>
<td>4.5</td>
<td>4, 8, 9</td>
</tr>
<tr>
<td>4.6</td>
<td>4, 5</td>
</tr>
</tbody>
</table>
Course description: Random variables, discrete and continuous distributions, multiple random variables, distributions of functions of random variables, convergence concepts.

Credit hours: 3

The following is an excerpt from SFA Policy 5.4:

The federal definition of a credit hour is an amount of work represented in intended learning outcomes and verified by evidence of student achievement that is an institutionally established equivalency that reasonably approximates:

1. Not less than one hour of classroom or direct faculty instruction and a minimum of two hours out-of-class student work each week for approximately fifteen weeks for one semester or trimester hour of credit, or 10 to 12 weeks for one quarter hour of credit, or the equivalent amount of work over a different amount of time, or;

2. At least an equivalent amount of work as outlined in item 1 above for other academic activities as established by the institution including laboratory work, internships, practica, studio work, and other academic work leading to the award of credit hours.

To this end, all students in courses offered by the Department of Mathematics and Statistics that wish to be successful should plan to spend a minimum of two hours outside of class for every credit hour associated with this course. Expected activities to be completed in the time outside of class include reviewing notes from previous class meetings, reading assigned course resources, completing all assigned exercises and projects, and performing periodic assessment preparation.

Course Prerequisites and Corequisites: MTH 4330 or equivalent

Course outline: Approximate time spent

- **Probability Functions and Spaces** 5%
 - Review of Set Theory
 - Probability Functions & the Axioms
 - The Probability Space
 - Elementary Probability Rules Based on the Axioms

- **Results of Conditioning & Independence** 10%
 - Conditional Probability
 - Theorem of Total Probabilities
 - Bayes’ Rule
 - Independent Events

- **Language of Random Variables** 10%
 - Discrete vs. Continuous Random Variables
 - Cumulative Distribution Function
 - Mass and Density Functions

- **Summary of Random Variables** 10%
 - Expected Value (Discrete and Continuous)
 - Variance and Standard Deviation of Random Variables
 - Moment Generating Functions (and other Generating Functions)

- **Discrete Distribution Theory** 20%
 - Uniform Distributions
 - Bernoulli Trials
• Binomial Models
• Geometric Models
• Negative Binomial Models
 o Hypergeometric Models
 o Poisson Models and the Poisson Process
 o Relationships Between Discrete Probability Models

• **Continuous Distribution Theory**
 25%
 o Uniform Distributions
 o Exponential and Gamma Models
 o The Normal Distribution
 o The Beta and Other Continuous Models
 o Relationships Between Models
 ▪ Exponential and Poisson
 ▪ Gamma and Poisson
 ▪ Uniform and Exponential
 o Truncation and Mixtures of Random Variables

• **Multivariate Probability Models**
 15%
 o Joint Cumulative Distribution Functions
 o Joint Mass Functions
 ▪ The Multinomial Distribution
 o Joint Density Functions
 ▪ The Multivariate Normal Distribution
 o Multivariate Expectation
 o Conditional Distributions
 ▪ Independent Random Variables
 ▪ Conditional Expectation and Variance
 ▪ Double Expectation Theorem
 o Covariance and Correlation

• **Transformations of Random Variables**
 5%
 o The Cumulative Distribution Function Method
 o The Moment Generating Function Method
 o Transformation Theorems

Student Learning Outcomes (SLO): At the end of MATH 5350, a student who has studied and learned the material should be able to:

1. Apply the axioms of probability and basic probability laws in order to compute likelihood of events in various scenarios. [PLO 1,2,3]
2. Recognize when conditional probabilities are relevant and be able to calculate a variety of conditional probabilities using several techniques. [PLO 1,2,3]
3. Explain the need for summarizing random variables and successfully compute the expected value and standard deviation of random variables useful in practice. [PLO 1,2,3]
4. Explain the role and meaning of random variable. [PLO 1,2,3]
5. Model random natural phenomena using discrete and continuous probability distributions. [PLO 1,2,3]
6. Explain the relationships which exist between the major probability distributions. [PLO 1,2,3]
7. List the main features of the popular discrete and continuous probability models. [PLO 1,2,3]
8. Calculate probabilities in higher dimensions and model multivariate random variables. [PLO 1,2,3]
9. Explain the need for functions of random variables and determine the appropriate density function for the function of a continuous random variable. [PLO 1,2,3]
10. Delineate between the major methods useful for finding the distribution of a function of random variables. [PLO 1,2,3]
11. Calculate and explain the relevance of correlation and its interpretation. [PLO 1,2,3]
Program Learning Outcomes (PLO): Students graduating from SFA with a M.S. Mathematical Sciences Degree will:

1. Written Communication - SFA Mathematics majors communicate mathematical ideas effectively in written form, integrating mathematical notation correctly and consistently.

2. Verbal Communication - SFA Mathematics majors communicate mathematics effectively to diverse audiences.

3. Mathematical Maturation - SFA Mathematics majors grow from a computational understanding of mathematics to an integrated approach which includes critical thinking proficiency, computational facility, conceptual understanding, and problem-solving persistence.

Academic Integrity

The Code of Student Conduct and Academic Integrity outlines the prohibited conduct by any student enrolled in a course at SFA. It is the responsibility of all members of all faculty, staff, and students to adhere to and uphold this policy.

Articles IV, VI, and VII of the new Code of Student Conduct and Academic Integrity outline the violations and procedures concerning academic conduct, including cheating, plagiarism, collusion, and misrepresentation. Cheating includes, but is not limited to: (1) Copying from the test paper (or other assignment) of another student, (2) Possession and/or use during a test of materials that are not authorized by the person giving the test, (3) Using, obtaining, or attempting to obtain by any means the whole or any part of a non-administered test, test key, homework solution, or computer program, or using a test that has been administered in prior classes or semesters without permission of the Faculty member, (4) Substituting for another person, or permitting another person to substitute for one’s self, to take a test, (5) Falsifying research data, laboratory reports, and/or other records or academic work offered for credit, (6) Using any sort of unauthorized resources or technology in completion of educational activities.

Plagiarism is the appropriation of material that is attributable in whole or in part to another source or the use of one’s own previous work in another context without citing that it was used previously, without any indication of the original source, including words, ideas, illustrations, structure, computer code, and other expression or media, and presenting that material as one’s own academic work being offered for credit or in conjunction with a program course or degree requirements.

Collusion is the unauthorized collaboration with another person in preparing academic assignments offered for credit or collaboration with another person to commit a violation of any provision of the rules on academic dishonesty, including disclosing and/or distributing the contents of an exam.

Misrepresentation is providing false grades or résumés; providing false or misleading information in an effort to receive a postponement or an extension on a test, quiz, or other assignment for the purpose of obtaining an academic or financial benefit for oneself or another individual or to injure another student academically or financially.

Withheld Grades Semester Grades (SFA Policy 5.5)

Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average. The circumstances precipitating the request must have occurred after the last day in which a student could withdraw from a course. Students requesting a WH must be passing the course with a minimum projected grade of C. For additional information, go to https://www.sfasu.edu/policies/course-grades-5.5.pdf.

Students with Disabilities

To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004.

www.sfasu.edu
(TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices.

Student Wellness and Well-Being
SFA values students' overall well-being, mental health and the role it plays in academic and overall student success. Students may experience stressors that can impact both their academic experience and their personal well-being. These may include academic pressure and challenges associated with relationships, emotional well-being, alcohol and other drugs, identities, finances, etc.

If you are experiencing concerns, seeking help, SFA provides a variety of resources to support students’ mental health and wellness. Many of these resources are free, and all of them are confidential.

On-campus Resources:
The Dean of Students Office (Rusk Building, 3rd floor lobby)
www.sfasu.edu/deanofstudents
936.468.7249
dos@sfasu.edu

SFA Human Services Counseling Clinic Human Services, Room 202
www.sfasu.edu/humanservices/139.asp
936.468.1041

The Health and Wellness Hub “The Hub”
Location: corner of E. College and Raguet St.
To support the health and well-being of every Lumberjack, the Health and Wellness Hub offers comprehensive services that treat the whole person – mind, body and spirit. Services include:

- Health Services
- Counseling Services
- Student Outreach and Support
- Food Pantry
- Wellness Coaching
- Alcohol and Other Drug Education

www.sfasu.edu/thehub
936.468.4008
thehub@sfasu.edu

Crisis Resources:
- Burke 24-hour crisis line: 1.800.392.8343
- National Suicide Crisis Prevention: 9-8-8
- Suicide Prevention Lifeline: 1.800.273.TALK (8255)
- Crisis Text Line: Text HELLO to 741-741

Acceptable Student Behavior
Classroom behavior should not interfere with the instructor’s ability to conduct the class or the ability of other students to learn from the instructional program (see the Student Conduct Code, policy 10.4). Unacceptable or disruptive behavior will not be tolerated. Students who disrupt the learning environment may be asked to leave class and may be subject to judicial, academic or other penalties. This prohibition applies to all instructional forums, including electronic, classroom, labs, discussion groups, field trips, etc. The instructor shall have full discretion over what behavior is appropriate/inappropriate in the classroom.

Date of document: 08/23/2023