About Your Instructor

- Instructor: Dr. Brian Beavers, Department of Mathematics and Statistics, Stephen F. Austin State University
- Office: Bush Mathematical Sciences Building 310
- ZOOM Personal Meeting Room: sfasu.zoom.us/my/drbeaverssfa
- Email: beaversbd@sfasu.edu
- Telephone: 936.468.1433
- Office Hours: 2:00-3:00pm MTW, 11:00am-12:00pm TR, or by appointment

Course Meetings and General Expectations

Class Meetings and Location: This is an online course. There are no physical class meetings.

While this is an online class, there will be deadlines and you will be expected to keep up with the flow of the course. As with most math classes, the content builds over the course of the semester. Thus you will need to reach certain milestones before you can proceed to the next topic.

Many students in past semesters have asked for a live weekly meeting. Shortly after the semester starts, I will poll the class for the best time to have an optional weekly synchronous meeting in ZOOM. This meeting will be recorded for those who cannot participate live. The following meeting information will be updated once a date and time have been decided upon.

ZOOM Meeting Information:

- Link: TBA
- Date and Time: TBA

I will be on the main SFA campus during the semester and available to meet face-to-face for any of you who are in the Nacogdoches area. My preferred method of remote meeting will be in ZOOM; you can use the link in my contact information above to access what ZOOM calls my "personal meeting room" but which I will refer to as my "Office Hours ZOOM Room." While I am physically in my office, I will also be in my office hours ZOOM room during my regularly scheduled office hours and you can drop in without advance notice. For times outside our weekly class meeting or my regularly scheduled office hours, please contact me to set up an appointment.

Besides face-to-face and ZOOM meetings, my preferred communication methods are email (SFA, not D2L) and Microsoft Teams chat. I do not check D2L email as often as my regular email, so if you want
to receive a faster response, please contact me using your Jacks mail account. I will set up a group chat for our class in Microsoft Teams where you can get your questions answered, either by me or your classmates. You are also welcome to send me direct messages in Teams about class-related issues. Your fellow students should also be able to help out in the Teams chat.

The following is an excerpt from SFA Policy 5.4:
The federal definition of a credit hour is an amount of work represented in intended learning outcomes and verified by evidence of student achievement that is an institutionally established equivalency that reasonably approximates:

1. Not less than one hour of classroom or direct faculty instruction and a minimum of two hours of-class student work each week for approximately fifteen weeks for one semester or trimester hour of credit, or 10 to 12 weeks for one quarter hour of credit, or the equivalent amount of work over a different amount of time, or;
2. At least an equivalent amount of work as outlined in item 1 above for other academic activities as established by the institution including laboratory work, internships, practica, studio work, and other academic work leading to the award of credit hours.

To this end, all students in courses offered by the Department of Mathematics and Statistics that wish to be successful should plan to spend a minimum of three hours of work for every credit hour associated with this course.

Expected activities to be completed in the time include reviewing course content, reading assigned course resources, completing all assigned exercises and projects, and performing periodic assessment preparation. Students should check email, D2L, and Teams daily for important announcements or set those systems to automatically send notifications where you will see them in a timely manner.

Materials

- No required textbook
- Functional computer with internet connectivity, preferably high-speed, and modern browser (Chrome, Firefox, Edge, Safari)
- Microsoft Office (available from SFA via mySFA and Office 365)
- Microsoft Teams
- Hand-held graphing or scientific calculator, such as TI-83 or TI-84.

Course Description

Limiting processes and other concepts of calculus. Includes analysis of numerical approaches to problem solving using technology and appropriate software with historical and grades 4-8 classroom connections. Students will be required to have a graphing calculator. Prerequisites: C or higher in MATH 3300.
Learning Objectives

See the departmental syllabus online.

About This Course

Most of the amazing technology of the modern world has calculus to thank for its creation. Calculus was built on taming some aspects of infinity... a difficult and mind-expanding feat. In this course, we will take your knowledge of algebra and your skills in rigorous mathematical thinking to see how to get finite results from infinite processes - results that have amazing and far-reaching applications.

While students in elementary and middle-level grades will not have to worry much about infinity, other important concepts of calculus such as the difference between approximation and exact values, the idea of successive approximations converging to an exact answer, and examining a concept from multiple angles (numerical, graphical, and algebraic) are concepts of calculus that do appear long before calculus. It is these concepts that we will work to master in this class by studying the fundamental concepts and techniques of calculus.

We have a variety of activities: readings, assignments, discussions and projects, both as an individual and in groups, to help you understand the concepts and develop necessary skills. Your course letter grade will be calculated as a weighted average of four tests and the series of assignments.

This course is dependent on technology and making machines do what we need them to do when we need them to do it. If you find a glitch in anything, it is your responsibility to inform me immediately! If it is something that I can fix, I will do so ASAP. Otherwise, I will direct you to other means of help. Only with such advance notification will I consider extending deadlines as a result of technical difficulties.

Getting Started

The first requirement of this course is to complete the "Getting Started" module which basically gives you all the information that you will need to be prepared for this online course. You should regularly consult the timeline in the Getting Started module. This timeline provides a list of all assignments as well as their due dates. I will be updating this as the semester proceeds. Also, be sure to read each News item carefully; I will use the News tool to remind you of upcoming deadlines and make important announcements. You may want to set D2L to alert you outside of D2L when there is a new News item.

The Getting Started module includes all the basic course information such as this syllabus, the departmental course description, an introduction assignment, etc. Note that successful completion of the Getting Started module includes a quiz designed to reinforce the important points in this document and the other materials in the module. You must receive a perfect score (100%) on the quiz and create a new thread in the Student Introduction Discussion before any other modules will be available to you. You may retake the quiz until you receive the required score.

About the Content Modules
There are six main content modules in this course plus a review module. The first two modules provide a review of sequences and series plus some new ideas. In addition, we will define the concept of limit and examine ways to calculate the limit of sequences and series. In the third module, we will use sequences and series to introduce proof by induction. In the fourth module, we will extend the idea of limits to functions. In the final two modules, we will examine the concepts of the derivative and integral - the two main tools of calculus. Each module includes practice problems and Stop & Think exercises; solutions to these are provided in the module. At the end of each module, you will be required to complete a module quiz over the content in the module before moving on to the next module. These quizzes are designed to assess your proficiency with the content and to help you identify any areas you should explore further. The quizzes are scored in D2L and thus you will have results immediately after submission. Only the first attempt on the module quiz is recorded. The quizzes may be repeated but, since the solutions are revealed once the quiz is submitted for grading, the score on the subsequent attempts will not be recorded. Additional attempts will serve only as a review of the material. In some modules, you will also have assignments that must be submitted via the dropbox tool or discussion assignments that will be posted to the discussion board. Graded assignments will be the bulk of the participation part of your course grade.

The Discussion Board

The discussion board is the location where you and your classmates will see any discussion assignments and post discussion responses that are to be shared with the whole class. Discussion assignments count toward the class participation portion of your grade. If you click the discussion tool, you will see that there are three items available to you on day one: Student Introductions, Errata Discussion, and Free Discussion.

If you have already completed your student introduction, you should see that introduction posted in the Student Introduction Discussion along with the postings from your classmates. (Be sure to revisit this link so that you can find out who else is in the course with you!). You may respond to your classmates' introductions if you want, but a response is not necessary in this discussion. The Free Discussion category is a place where we can talk in general about anything regarding the course. This is a place where you can post a question that you have about the course. Be sure to ask any time you have a question, as the answer might also serve other students. However, the group chat in Teams might be more convenient to use for this purpose.

In addition, you should see a category entitled Errata Discussion. Although I have tried to make sure that all information is correct, I am constantly updating and improving the course. In particular, I'm making a major overhaul in formatting this semester and revising the assignments. In making improvements, it is easy for an error or typo to slip in. For example, if you find a link that is not working, please post that information to the Errata Discussion board including where the link is located in the module. All error captures to this board are greatly appreciated by the designer of the course!

Weekly Meetings

The class will have a weekly one-hour meeting at a time to be announced after a survey during the first week of classes. This is an optional meeting, but all students are highly encouraged to attend or to watch the video recording of the class meeting after the meeting has occurred. This meeting is a chance for you to ask questions and get live help with the content of the course. We will also use this time to extend the class discussion assignments from the discussion tool.
Course Outline

- Getting Started
- Module 0: Review
- Module 1: Sequences
 - sequences - definition and notation
 - recursive vs. direct formula notation
 - arithmetic and geometric sequences & formulas
 - using finite differences to find direct formulas
 - using algorithms to approximate roots of polynomials
 - convergence and divergence of sequences
 - limit of a sequence
 - using spreadsheets and other computation software to compute sequence values and estimate limits
- Module 2: Series
 - definition of series
 - sigma (summation) notation
 - sequence of partial sums
 - convergence and divergence of series
 - sum of a series
 - geometric series and formulas
 - repeating decimals
 - using spreadsheets and other computation software to compute partial sums and estimate limits
- Module 3: Induction
 - the principle of mathematical induction
 - induction proofs involving equations (direct formulas for sums)
 - induction proofs involving inequalities or other types of statements
- Module 4: Limits of Functions
 - definitions concerning limits of functions
 - estimating limits of functions numerically
 - estimating limits of functions using graphs
 - computing exact limits of functions using algebra
- Module 5: Derivatives
 - slopes and rates of change
 - definition of derivative
 - tangent lines and their slopes
 - instantaneous vs. average rates of change
 - graphing and interpreting graphs using derivatives
 - estimating derivatives numerically
 - computing derivatives using the rules
- Module 6: Integrals
 - definition of definite and indefinite integrals
 - fundamental theorem of calculus
 - estimating integrals with Riemann sums
 - computing exact areas using definite integrals
Grading Policy

Computation of Course Grade

Your course grade will be determined by your performance on graded work in the following categories: (1) assignments, (2) three tests, and (3) a comprehensive final exam. Your final course grade will be the weighted mean as follows:

- "Participation" - 10%. This is the mean of your scores, equally weighted, on the various discussions, quizzes and other assignments that I will collect during the course. Many assignments will be written homework to be turned in to D2L's Dropbox feature. Some will be discussions or quizzes in D2L. All assignments will be detailed in the module and timeline in D2L.
- "Test 1," "Test 2," and "Test 3" - 20% each, and "Final Exam" - 30%. You will be required to complete three tests and a final during this course. For each test you will be allowed 90 minutes, and you will be allowed 2 hours for the final exam. These can be taken (1) proctored by me in my office, in the Math Department testing room, or in ZOOM, (2) proctored live in person at or near your current location by a responsible party in authority over you, or (3) proctored by a testing center near you, such as at a library or community college. You may take the test any day during the following test windows, subject to the time availability of your proctor for each method. I aim for a final deadline of 8pm on the last day of the testing window. I proctor only between 7am and 5pm, Monday through Friday.

- Test Dates
 - Test 1: February 5-7
 - Test 2: March 4-6
 - Test 3: April 8-10
 - Final Exam: May 6-8

Score Descriptors

Tests, the Final Exam, and your final course letter grade will be graded on the "standard 10-point" scale based on the percentage (rounded to the nearest percent) of total points earned by the student on the exam or on assignments:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>[90%,100%]</td>
</tr>
<tr>
<td>B</td>
<td>[80%,90%)</td>
</tr>
<tr>
<td>C</td>
<td>[70%,80%)</td>
</tr>
<tr>
<td>D</td>
<td>[60%,70%)</td>
</tr>
<tr>
<td>F</td>
<td>[0%,60%)</td>
</tr>
</tbody>
</table>

More Grading Policies
Assignments counting towards the Participation component will be graded out of a set number of partial credit points, often out of 10. The overall Participation course component will be the mean of these scores and then directly converted to a percentage out of 100.

Dropbox assignments are generally due on Mondays at 8am. If you submit a good faith, reasonably-complete attempt by the deadline, you can resubmit your assignment later in the course, up through the beginning of finals week, for regrading and fresh comments. If you do not make a good faith, reasonably-complete attempt by the announced deadline, you will receive a 0 for that assignment, but you may submit later or resubmit to get feedback while the grade remains fixed at 0.

Discussion assignments are meant to truly be discussions, not a generic "make one post and two replies for full credit" kind of assignment. These are some of the most important assignments in the class! The concepts of calculus are subtle and we need to practice using mathematical language in order to understand that subtlety. Generally, discussions will be graded out of 10 points. To get a 10/10 score, you will need to make posts that are (1) substantive and (2) advance the discussion, you will need to keep up with the discussion by reading a significant number of the posts (which grows over time as people participate), and you will need to participate continually while the discussion is ongoing. When I say substantive, I mean that the post should contain specific relevant mathematical content, not just something that is equivalent to "I agree" or "I don't understand." If there is something you don't understand, try to articulate what it is that you don't understand. Non-substantive replies are welcome, but they are not sufficient for credit, especially without any follow-up posts. You should also be advancing the discussion; that is, you should be making posts relevant to the questions being asked and replying directly to the person who says something (don't just address your responses to me). If someone asks you a question but you never return to see the question, that will result in a lower grade. You should visit the current discussion several times during the week to keep up.

Make-Up, Communication, Academic Dishonesty, and Other Class Policies

- It is your responsibility to be aware of due dates and to have access to a computer and other equipment that can handle the necessary work, and to schedule enough time to complete the assignments. Don't wait until the last minute to start on your assignments; start on them immediately so that you have time to sufficient time to think about them and get help before the deadline.
- Most written assignments that have at least been attempted by the initial due date can be resubmitted after the due date without penalty after I give you feedback. This is so you can use these assignments as practice. Remember that it's OK to make mistakes when you practice so long as you learn to correct your mistakes as you continue to work. The final deadline for resubmissions will be 8am on the Monday of finals week.
- Deadlines may be extended at the discretion of the instructor for good excuses, but you should make every effort to avoid doing things at the last minute.
- Please don't hesitate to contact me if you have questions. You may drop by office hours, call my office, contact me in Microsoft Teams, or e-mail me. I only have five scheduled office hours on campus, but half my duties are technical support for the college, so I can usually easily be found
in or around my office during the week. You are welcome to schedule a time to meet me in person or online during the week if my office hours don't fit your schedule.

- However, you should hesitate to contact me if the information you are asking about can be found in the syllabus or content in D2L. Check those resources before asking me. Issues needing your immediate attention will be posted as news items and to Teams.

- You bear partial responsibility to help make the class a welcoming learning environment. See the SFA Way, below, as a reminder of how we all can work together to make this class a space that facilitates the learning of mathematics - where everyone is comfortable with the process of practicing, making mistakes, learning from those mistakes, and growing from the supportive insights of others. I also pledge to follow the SFA Way.

- You are expected to participate multiple times per week and to contribute substantively to any group assignments; your grade on assignments can be affected by nonparticipation.

- Academic dishonesty ("cheating") is a most serious offense. Remember, academic dishonesty is determined by university policy and what I consider cheating; what I consider cheating may not be the same as what you consider to be cheating. If you have any questions as to what I consider cheating, it is your responsibility to ask me about it ahead of time. Here are some of the ways I define academic dishonesty for the various components of this class. These are examples and not exhaustive lists of what I consider cheating. See also the official SFA policy later as linked in Departmental Syllabus.

 - Overall: Copying or paraphrasing from any source without citation or without explicit permission. In mathematics, copying formulas or other mathematical facts is not considered plagiarism, but copying explanations often is. It should be your voice and style coming through your words and arrangements of symbols.

 - Tests and final exam: Do not use any materials besides those provided at the test or otherwise expressly permitted by the instructor. You will be permitted to use your calculator, a writing instrument, and scratch paper on each test. Water or other drinks are permitted at the discretion of the instructor or testing facility after inspection. You may use any calculator sufficient for your computation needs but you must not program notes into your graphing calculator. You may not talk to anyone else in the class about any specifics of the test unless neither of you have taken the test and until after both of you have taken the test. For those of you testing off campus, your chosen testing center may have more restrictive requirements than me.

 - Group assignments: Copying or paraphrasing from any other groups or anyone outside the course. Using projects submitted by students who have previously taken the course is also considered academic dishonesty. Only use the resources allowed in the instructions.

 - Individual assignments: Copying or paraphrasing from other students is prohibited. Hiring or asking others, including AI, to produce entire solutions for your problems that you then copy wholesale and submit as your work is also prohibited. Individual assignments are intended to measure your understanding of the material of the course, not anyone else's. As individual work, it is normal to expect that your work should have some significant differences that indicate your individuality. Just changing a few words or symbols from someone else's work counts as cheating. You work should reflect your true understanding of the material, not just responses parroted or cobbled together from others in class or outside class, including the internet, tutors, or AI. With advance permission, you may work with classmates on assignments. But if you do so, note somewhere in the assignment who you worked with or discussed the assignment with, and do this on every assignment where you work together. Even if you have permission to work together, you should make a deliberate effort to make you work look substantively different from the person you worked with. "We worked
"together" is not a valid excuse for individual assignments to look the same unless you have explicit permission from me. Some work, especially correct work, will look very similar between students; often it is an unusual error that gives away the fact the you are working with someone else. What counts as "significant differences" can differ from assignment to assignment. If I consider the submissions too similar, I can no longer just assign a failing grade. Rather, I will have to submit all parties to the university for adjudication and make a recommendation for consequences. I will usually recommend a penalty of 0 on the assignment.

- Study groups: If you have someone you work on these assignments with regularly, don't risk it! Contact me immediately so I am aware of who the study groups are; I am pretty relaxed on giving you permission to work together. Just be sure to mention who you worked with in your assignment submission. It is common for students in this class to already know each other and to be on the same group chat outside of Teams and discuss this and other classes in that chat. This may count as collaboration or cheating depending on the specifics of what is said in the group. I highly recommend that you use Teams or the discussion area for such discussions of class content where I can monitor them for academic integrity and can nudge a conversation away if it's getting too close to cheating.

- Make sure you have read this entire syllabus carefully because you are responsible for what lies within it. Ignorance of the rules is not an excuse.

Tips For A Successful Math Class

- **Sleep and relax!** Well...outside of class, that is. It is hard to do math well with a tired or anxious mind!
- **Learn mathematical terminology!** It's hard to think and talk about concepts when you don’t know what the words mean that we’re using. For any math word, be able to give a formal definition, an informal definition, an example that illustrates the concept, and “non-examples” (examples of situations that are close to being right, but not quite).
- **Do. The. Homework.** All of it. Several times if necessary. Create new problems if you run out of problems to practice.
- **Strategize!** Take the time to think about how the different types of problems are solved and create a road map in your mind how to get to the solution.
- **The quality of the time is as important as the quantity of the time you spend studying.** You have to understand the concepts and basic examples before you can master the harder problems. Regularly look back at the big picture when you get stuck on an immediate detail.
- **Get help!** If you’re alert, know the words, and understand the examples but are still stuck, then get help from me or a tutor.
- **Learning math is a lot like learning anything else – sports, music, etc.** Some have natural talent and some don’t, but with a bit of effort, everyone can do it! At the beginning, you have to drill those basic moves until you can do them almost without thinking in order to overcome your anxiety. Only then can you concentrate on improving your skills and learning more sophisticated moves. I am your coach; I can’t make the moves for you. I can show you the mechanics of the move and explain why the move does what it does, but only you can do it for yourself. You must both practice and reflect on your performance in order to win!
• Find your motivation and hold onto it! It’s hard to do well in something you don’t want to do, and it’s easy to get lost in the drudgery and lose focus. But, math can be very beautiful and enjoyable with a little motivation!

The SFA Way

"...striving for personal excellence in everything that we do."

At Stephen F. Austin State University, our faculty, staff, alumni and students believe in doing things "The SFA Way." We expect the best from ourselves and from each other, and we hold each other accountable when we fail to maintain these standards.

Root Principles

Grounded in the five "Root Principles" below, members of the SFASU community seeks to strive for personal excellence in everything that we do.

The Principle of Respect:

Lumberjacks command respect and treat others with respect • They are considerate of others and tolerant of differences • They demonstrate respect for those around them by avoiding the use of offensive or profane language • They do not threaten or harm anyone and deal peacefully and civilly with conflict.

The Principle of Caring:

Lumberjacks think of the needs of others and seek to improve the quality of life of those around them • They are compassionate, empathic and kind • They respond with humility to those they have helped and express gratitude freely to those who help them • Lumberjacks prepare themselves to become leaders in their communities and workplaces • They dedicate themselves to excellence in their chosen field of study and to using what they learn in the service of others.

The Principle of Responsibility:

Lumberjacks do what is right • They persevere in times of adversity • Through self-control and self-discipline, they strive to do their best • Lumberjacks challenge each other to exceed expectations • They are active learners both inside and outside of the classroom • They are reliable; they do what they say they will do • Lumberjacks hold themselves accountable for their decisions •

The Principle of Unity:

Lumberjacks are loyal to their friends, family, university, state and country • Lumberjacks stand together against any adversary • They recognize that though we are very different from one another, we are united by the Lumberjack Spirit. Lumberjacks seek to understand the people and world around them • When one lumberjack fails, all fail • When one lumberjack succeeds, all succeed.

The Principle of Integrity:

Lumberjacks have the courage to do what is right, even when it is hard or unpopular • They respond to each situation with steadfast values that are not subject to change based on the actions of others •
They seek opportunities to practice effective and ethical leadership • Lumberjacks are honest; they do not deceive, cheat or steal • Lumberjacks stand up for those who cannot stand up for themselves • As lifelong learners, lumberjacks are committed to continuously improving themselves.
Course Description: Limiting processes and other concepts of calculus. Includes analysis of numerical approaches to problem solving using technology and appropriate software with historical and grades 4-8 classroom connections. Students will be required to have a graphing calculator.

Credit hours: 3

The following is an excerpt from SFA Policy 5.4:

The federal definition of a credit hour is an amount of work represented in intended learning outcomes and verified by evidence of student achievement that is an institutionally established equivalency that reasonably approximates:

1. Not less than one hour of classroom or direct faculty instruction and a minimum of two hours out-of-class student work each week for approximately fifteen weeks for one semester or trimester hour of credit, or 10 to 12 weeks for one quarter hour of credit, or the equivalent amount of work over a different amount of time, or;

2. At least an equivalent amount of work as outlined in item 1 above for other academic activities as established by the institution including laboratory work, internships, practica, studio work, and other academic work leading to the award of credit hours.

To this end, all students in courses offered by the Department of Mathematics and Statistics that wish to be successful should plan to spend a minimum of two hours outside of class for every credit hour associated with this course. Expected activities to be completed in the time outside of class include reviewing notes from previous class meetings, reading assigned course resources, completing all assigned exercises and projects, and performing periodic assessment preparation.

Course Prerequisites and Corequisites: MTH 300

Course outline: Approximate time spent

- Relations, Functions, and Concepts of Infinity 50%
 - Numerical techniques applied to arithmetic and geometric sequences and series
 - Patterns in growth and decay
 - Iterative and recursive processes
 - Summation and product notation: applications to programming using loops
 - Computer simulation: random number generator
 - Numerical and graphical techniques for solving equations
 - Graphing systems
 - Intermediate Value Theorem
 - Bisection
 - Historical and classroom connections

- Other Concepts of Calculus 50%
 - Introduction to limit concepts: numerical and theoretical approaches
 - Convergence and divergence
 - Sequences of partial sums: patterns, conjectures, and proof by induction
 - Introduction to derivative concepts: numerical and theoretical approaches
 - Functions and rates of change
 - Fitting curves to derivative data
 - Connections to Pascal's Triangle and Binomial Theorem
 - Introduction to integral concepts: numerical and theoretical approaches
 - Rectangular and Monte Carlo approximations
 - Area between curves
 - Fundamental Theorem of Calculus
Historical and classroom connections

Student Learning Outcomes (SLO): At the end of MATH 301, a student who has studied and learned the material should be able to:
1. Find limits, derivatives, and integrals using numerical and graphical techniques. [SBEC: II, III]
2. Use proper notation for derivatives and integrals. [SBEC: II, III]
3. Find derivatives and antiderivatives of polynomial functions using the power function rule. [SBEC: II, III]
4. Demonstrate an understanding of the connection between limits and asymptotic behavior in functions. [SBEC: II, III]
5. Use the Fundamental Theorem of Calculus to evaluate definite integrals. [SBEC: III]
6. Communicate orally and in written form an understanding of the connections among geometric, graphic, numeric, and algebraic solutions to problems. [SBEC: V]
7. Demonstrate an understanding of the connections between limits, derivatives, and integrals. [SBEC: II, III]
8. Use calculus concepts to answer questions about rates of change, areas, volumes, and properties of functions and their graphs. [SBEC: II, III]
9. Relate the concepts of limit, rate of change, and area under a curve as conceptual foundations of calculus to middle school mathematics. [SBEC: II]
10. Use spreadsheets and graphing calculators to perform simulations, solve problems, and support understanding of calculus concepts. [SBEC: III, V]
11. Apply principles of logic, iteration and recursion, and algorithmic thinking to write graphing calculator programs to solve a variety of problems numerically. [SBEC: I, V]
12. Demonstrate an understanding of the historical development of calculus and technology and the ensuing societal impacts. [SBEC: VI]

There are no specific program learning outcomes for this major addressed in this course. It is a general education core curriculum course and/or a service course.

Texas State Board for Educator Certification (SBEC): Mathematics Standards

Standard I. Number Concepts: The mathematics teacher understands and uses numbers, number systems and their structure, operations and algorithms, quantitative reasoning, and technology appropriate to teach the statewide curriculum (Texas Essential Knowledge and Skills [TEKS]) in order to prepare students to use mathematics.

Standard II. Patterns and Algebra: The mathematics teacher understands and uses patterns, relations, functions, algebraic reasoning, analysis, and technology appropriate to teach the statewide curriculum (Texas Essential Knowledge and Skills [TEKS]) in order to prepare students to use mathematics.

Standard III. Geometry and Measurement: The mathematics teacher understands and uses geometry, spatial reasoning, measurement concepts and principles, and technology appropriate to teach the statewide curriculum (Texas Essential Knowledge and Skills [TEKS]) in order to prepare students to use mathematics.

Standard V. Mathematical Processes: The mathematics teacher understands and uses mathematical processes to reason mathematically, to solve mathematical problems, to make mathematical connections within and outside of mathematics, and to communicate mathematically.

Standard VI. Mathematical Perspectives: The mathematics teacher understands the historical development of mathematical ideas, the interrelationship between society and mathematics, the structure of mathematics, and the evolving nature of mathematics and mathematical knowledge.

Academic Integrity
The Code of Student Conduct and Academic Integrity outlines the prohibited conduct by any student enrolled in a course at SFA. It is the responsibility of all members of all faculty, staff, and students to adhere to and uphold this policy.
Articles IV, VI, and VII of the new Code of Student Conduct and Academic Integrity outline the violations and procedures concerning academic conduct, including cheating, plagiarism, collusion, and misrepresentation. Cheating includes, but is not limited to: (1) Copying from the test paper (or other assignment) of another student, (2) Possession and/or use during a test of materials that are not authorized by the person giving the test, (3) Using, obtaining, or attempting to obtain by any means the whole or any part of a non-administered test, test key, homework solution, or computer program, or using a test that has been administered in prior classes or semesters without permission of the Faculty member, (4) Substituting for another person, or permitting another person to substitute for one’s self, to take a test, (5) Falsifying research data, laboratory reports, and/or other records or academic work offered for credit, (6) Using any sort of unauthorized resources or technology in completion of educational activities.

Plagiarism is the appropriation of material that is attributable in whole or in part to another source or the use of one’s own previous work in another context without citing that it was used previously, without any indication of the original source, including words, ideas, illustrations, structure, computer code, and other expression or media, and presenting that material as one’s own academic work being offered for credit or in conjunction with a program course or degree requirements.

Collusion is the unauthorized collaboration with another person in preparing academic assignments offered for credit or collaboration with another person to commit a violation of any provision of the rules on academic dishonesty, including disclosing and/or distributing the contents of an exam.

Misrepresentation is providing false grades or résumés; providing false or misleading information in an effort to receive a postponement or an extension on a test, quiz, or other assignment for the purpose of obtaining an academic or financial benefit for oneself or another individual or to injure another student academically or financially.

Withheld Grades Semester Grades (SFA Policy 5.5)
Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average. The circumstances precipitating the request must have occurred after the last day in which a student could withdraw from a course. Students requesting a WH must be passing the course with a minimum projected grade of C. For additional information, go to https://www.sfasu.edu/policies/course-grades-5.5.pdf.

Students with Disabilities
To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices.

Student Wellness and Well-Being
SFA values students’ overall well-being, mental health and the role it plays in academic and overall student success. Students may experience stressors that can impact both their academic experience and their personal well-being. These may include academic pressure and challenges associated with relationships, emotional well-being, alcohol and other drugs, identities, finances, etc.

If you are experiencing concerns, seeking help, SFA provides a variety of resources to support students’ mental health and wellness. Many of these resources are free, and all of them are confidential.

On-campus Resources:
The Dean of Students Office (Rusk Building, 3rd floor lobby)
The Health and Wellness Hub “The Hub”
Location: corner of E. College and Raguet St.

To support the health and well-being of every Lumberjack, the Health and Wellness Hub offers comprehensive services that treat the whole person – mind, body and spirit. Services include:

- Health Services
- Counseling Services
- Student Outreach and Support
- Food Pantry
- Wellness Coaching
- Alcohol and Other Drug Education

Crisis Resources:
- Burke 24-hour crisis line: 1.800.392.8343
- National Suicide Crisis Prevention: 9-8-8
- Suicide Prevention Lifeline: 1.800.273.TALK (8255)
- Crisis Text Line: Text HELLO to 741-741

Acceptable Student Behavior
Classroom behavior should not interfere with the instructor’s ability to conduct the class or the ability of other students to learn from the instructional program (see the Student Conduct Code, policy 10.4). Unacceptable or disruptive behavior will not be tolerated. Students who disrupt the learning environment may be asked to leave class and may be subject to judicial, academic or other penalties. This prohibition applies to all instructional forums, including electronic, classroom, labs, discussion groups, field trips, etc. The instructor shall have full discretion over what behavior is appropriate/inappropriate in the classroom.

Date of document: 08/23/2023