CoSM Class Syllabus / Policy

2024 / Spring Semester, Second ½ Term
GEOL 1301.502 & GEOL 1001.502 (Lecture and Laboratory)
Fundamentals of Earth Science

Name: Dr. Mindy Faulkner
Department: Earth Sciences and Geologic Resources
Email: mgshaw@sfasu.edu
Phone: 936-468-2236
Office: E.L. Miller Science, Room 310
Office Hours: This is an online course and office hours will be offered electronically. In office hours available by appointment.

The lecture and laboratory portion of this class are both online courses. Please refer to the detailed calendar found at the end of the syllabus. There is a mandatory quiz associated with the syllabus, so please read all the information in this unit carefully and then complete the Course Information and Syllabus Quiz and Laboratory Procedures Quiz in order to proceed into the course material.

Note: these quizzes must be completed before any of the course material will be made available, the lecture and laboratory modules will remain locked until you complete these quizzes.

Text and Materials
Fundamentals of Earth Science Laboratory Kit (available from the SFA Barnes & Noble bookstore)
*No textbook is required, but I recommend that you purchase a text if your personal learning style benefits from having a textbook for reference. Any previous editions of introductory or physical geology textbook purchased through various online booksellers would be a viable option. Textbook editions vary little in content; updates are generally associated with pictures and graphics.

Course Description
Fundamentals of Earth Science (GEOL 1301) Two hours lecture, two hours laboratory per week. An introduction to the fundamental principles of Earth Science: topics include the earth’s structure and surface landforms; mineral and energy resources; geologic hazards such as volcanoes, earthquakes and landslides; water resources; and the unifying theory of plate tectonics. Required lab fee. No prerequisites.

Program Learning Outcomes
There are no specific program learning outcomes for this major addressed in this course. It is a general education core curriculum course and / or a service course.

General Education Core Curriculum Objectives/Outcomes
The Texas Higher Education Coordinating Board has identified six core learning objectives: Critical Thinking Skills, Communication Skills, Empirical and Quantitative Skills, Teamwork, Personal Responsibility, and Social Responsibility. SFA is committed to the improvement of its
general education core curriculum by regular assessment of student performance on these six objectives. By enrolling in GEOL 1301 Fundamentals of Earth Science, you are also enrolling in a Core Curriculum Course that seeks to develop the following core objectives established by the THECB:

- **Critical Thinking Skills** – creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information.
- **Communication Skills** – effective development, interpretation and expression of ideas through written, oral and visual communication.
- **Empirical and Quantitative Skills** – manipulation and analysis of numerical data or observable facts resulting in informed conclusions.
- **Teamwork** – the ability to consider different points of view and to work effectively with others to support a shared purpose or goal.
- **Personal Responsibility** – the ability to connect choices, actions and consequences to ethical decision-making.
- **Social Responsibility** – intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities.

This course will focus on **Critical Thinking Skills**, developing scientific inquiry through weekly discussion threads, data analysis in laboratory exercises, and written reports associated with Earthquake Analysis and Alternative Energy modules.

Student Learning Outcomes for Lecture and Lab
After successful completion of this course students will be able to:

- Demonstrate an understanding of fundamental geologic concepts as it relates to Earth processes and landscape evolution through geologic time.
- Use quantitative reasoning to interpret geologic data (tables, figures, graphs) from primary research, data assimilation and models to assess the differences in competing scientific theories associated with rock formation.
- Demonstrate knowledge on the interdependence of science and technology and the influences geologic reasoning associated with identifiable and testable hypotheses of geologic processes.
- Critically assess the interrelationships between geologic phenomena and communicate the resulting conclusions in oral, visual and written formats.
- Demonstrate an understanding of the skills and attitudes necessary for effective teamwork in collaborative learning activities.

Course Requirements
GEOL 1301 and 1001 (Fundamentals of Earth Science – Lecture and Laboratory) is an introduction to the study of the earth’s structure and natural processes. In this course, students will be introduced to and apply the scientific method to evaluate hypotheses regarding the earth’s structure, the distribution of natural resources, the immediate and long-term impact of geologic hazards, and anthropogenic influence on the natural world.

The Federal Definition of the Credit Hour: a credit hour is an amount of work represented in intended learning outcomes and verified by evidence of student achievement that is an institutionally established equivalency that reasonably approximates not less than one hour of...
classroom or direct faculty instruction and a minimum of two hours out of class student work each week for approximately fifteen weeks for one semester of credit.

This class is a 3-credit hour course and has a weekly requisite lab where students will gain hands-on experience with earth materials, gathering and analyzing data, communicating their findings and working as a team to explain scientific processes. Fundamentals of Earth Science contains extensive written content that includes the same information students in a face-to-face lecture course receive, requiring students to engage the online modules for at least three hours per week. Primary source readings are woven into the content to support key concepts and provide perspective on earth science concepts. In addition, students are required to complete quizzes/exams over the course content, participate in weekly discussion forums, and complete multiple writing assignments that evaluate their comprehension of earth materials and processes. Successful completion of all elements for the course requires at least six hours of additional student work each week.

Time

Remember, you are expected to spend the same amount of time on online courses that you would spend for in the classroom for face-to-face courses. That is, expect to spend two hours per week on the lecture portion and two hours per week on the laboratory portion. In addition, success in this course would also require additional time spent in the material and studying; reports indicate that two to three additional hours (per credit hour) be spent—indeed of whether the class is online or face-to-face. Many of you are choosing to take an online course because of your work schedule, family responsibilities, and scheduling conflicts, so your time is precious. Be aware of the time commitment required by this course and work responsibly.

Course Topics

Unit One - Earth in Context
- Geologic Time / Earth in context (Lab 1)
- Minerals and Native Elements (Lab 2)

Unit Two – Earth Structure and the Rock Cycle
- Intrusive Igneous Rocks (Lab 3)
- Weathering and Erosion (Lab 4)
- Sedimentary Rocks (Lab 4)
- Metamorphic Rocks (Lab 5)

Unit Three - Earth Processes
- Plate Tectonics and the Natural Environment (Lab 6)
- Earthquakes (Lab 7)
- Volcanoes (Lab 7)
- Rock Deformation and Geohazards (Lab 8)

Unit Four - Earth Resources
• Fossil Fuels (Lab 9)
• Mineral Resources (Lab 10)
• Water Resources (Lab 11)
• Soil Resources (Lab 12)

Unit Five - Earth in Society

• Alternative Energy (Lab 13 – Group Project)
• Populations and Resources

*Please see the Course Calendar at the end of the syllabus for the dates associated with each of these topics.

Access to Content
I will provide access to the content on Saturday mornings, 6:00 a.m. as listed on the Course Calendar. Lecture exams will be available on the scheduled Mondays after the completion of a unit between 6:00 a.m. and 11:30 p.m. You will be able to receive your score on exams or quizzes once everyone has completed the exam and any answers that need to be individually graded have been scored. In these cases, time will be needed to review the assessments and make sure questions were asked and graded fairly. Answers to quiz and exam questions will be available once every classmate has submitted their assessment. Quizzes, unit, and module content will be available until 11:30 p.m. the day before an exam, but module content cannot be viewed the day of an exam. So, plan appropriately!

Lecture Examination Schedule*

• Exam 1: Monday, March 25 (6:00 a.m. to 11:30 p.m.)
• Exam 2: Monday, April 8 (6:00 a.m. to 11:30 p.m.)
• Exam 3: Monday, April 15 (6:00 a.m. to 11:30 p.m.)
• Exam 4: Monday, April 29 (6:00 a.m. to 11:30 p.m.)
• Exam 5: Monday, May 6 (6:00 a.m. to 11:30 p.m.)

Laboratory Examination Schedule*

• Midterm Exam: Thursday, April 11 (6:00 a.m. to 11:30 p.m.)
• Final Exam: Thursday, May 2 (6:00 a.m. to 11:30 p.m.)

*Please see the Course Calendar at the end of the syllabus for the opening and closing times associated with these exams.

All exams will include any or all of the following sections: 1) multiple choice questions; 2) true / false questions; 3) fill in the blank questions; 4) short answer questions; 5) figure illustration; 6) short essay questions. All exams will take place online and be delivered via d2l. The exams will cover questions from lecture modules and assigned activities and outside sources (videos, webpages) referred to in the material. Laboratory exams will cover materials in the laboratory including rock and mineral identification and concepts developed in weekly activities.
There are between 30 and 50 questions each on each exam, and you will be given 60-75 minutes to complete the exams. The exams are not cumulative, but they are timed and you will not have adequate time to refer back to reference material. Questions on lecture exams and quizzes are written by the instructor, and the assessment content has been presented in the online content. D2L randomly selects questions from a question bank, and they appear one question at a time. You may not return to any question and change your answer after leaving that page so be sure of your response (study ahead of time!) before answering. It is recommended that you save your responses as you complete each question because of unknown timing of computer or power failure. I cannot help you if questions have not been saved. Once the time allotment for the exam has expired, the exam will be ended and scored.

No outside work or extra credit will be assigned to help improve your grade, so be prepared for the quizzes and exams. It is imperative that you log on and participate in all course material, pay attention to the course calendar, and keep up with the due dates for quizzes, discussions, and exams. In other words – get your money’s worth!

Late Work
This is not a self-paced course and you must keep up with the weekly assignments. Each week you will be required to interact with your classmates and me by participating in discussion forums, completing laboratory module activities, and completing quizzes in lecture and laboratory. It is imperative that you check the course calendar daily and be aware of the opening and closing dates of the modules and associated activities. If you miss one of the deadlines for an exam or quiz, please contact me to gain access. The most efficient way to communicate with me is via email, either mySFA or d2l.

Grading of late work:

- **Discussion Posts** - No time extensions will be offered for discussion posts as you will have already missed the opportunity to interact with your peers.
- **Lecture Quizzes and Exams** - You will automatically lose 50% of your earned grade if you submit late work within 48 hours after the due date. After 48 hours, no credit will be given.
- **Laboratory Quizzes and Assignments** - You will automatically lose 50% of your earned grade if you submit late work within 48 hours after the due date. After 48 hours, or once the answers to the laboratory activities are posted, no credit will be given.
- **Alternative Energy Group Project** - No time extensions will be offered for this activity.

Grading of late work: For the purposes of determining your grade, the time stamp on your submitted quiz or exam will be used to determine the amount deducted.

Dependable internet connection
Especially when taking quizzes or exams, always rely on a dependable internet connection. I do not recommend taking an assessment via your phone or any unstable wireless connection (McDonalds, Starbucks, etc.)

Discussion Board
The Discussion Board can be used as a place to exchange information amongst the instructor and classmates. There will be a general "Questions" post where students can ask questions.
regarding the weekly content. This is helpful to all, and I will respond to questions as quickly as possible. Please keep your discourse respectful to all, inappropriate comments will not be tolerated. If I miss your question in Discussions, please email and give me a gentle reminder. I always appreciate questions, and am happy to try to help.

Lecture Grading Policy

- Five exams (Exam 1 = 40 points, Exam 5 = 60 points, Exams 2-4 = 100 points each) = 400 points
- Fifteen online quizzes @ 10 points each = 150 points
- Fifteen discussion posts @ 10 points each = 150 points
- Total possible points = 700 points
- Lecture grade = your total points / 700, then multiply by 100
- Example: your lecture point total 520 / 700 = 0.74 x 100 = 74

Laboratory Grading Policy

- Two exams @ 100 points each = 200 points
- All laboratory activities = 200 points, including:
 - Laboratory quizzes, 9 quizzes @ 10 points each = 90 points
 - Plate Tectonics Map and Discussion Activity = 20 points
 - Earthquake Press Release = 20 points
 - Soil Resources Presentation = 20 points
 - Group Alternative Energy Group Position Statement = 30 points
 - Group Project Discussion Forum = 10 points
 - Group Project Survey = 10 points
- Total possible points = 400 points
- Laboratory grade = your total points / 400, then multiply by 100
- Example: your laboratory point total 310 / 400 = 0.77 x 100 = 77

Course Final Grading Policy

- Lecture counts 2/3 (66.7%) of the final course grade
- Lab counts 1/3 (33.3%) of the final course grade
- Total Points for Final Grade: 33.3% (Lab) + 66.7% (Lecture) = final course grade
- Example: Lecture grade = 74, Lab grade = 77
 - 74 x .667 = 49.36; 77 x .333 = 25.64; 49.36 + 25.64 = 75.00 final course grade

Grade Scale

90-100 + A, 80-89 + B, 70-79 + C, 60-69 + D, < 60 = F
Grades from the lecture and lab will be combined, with the lab counting 1/3 of the grade. You will receive one grade for the entire course, assigned by your instructor.

Academic Integrity (A-9.1)
The Code of Student Conduct and Academic Integrity outlines the prohibited conduct by any student enrolled in a course at SFA. It is the responsibility of all members of all faculty, staff, and students to adhere to and uphold this policy. Articles IV, VI, and VII of the new Code of Student
Conduct and Academic Integrity outline the violations and procedures concerning academic conduct, including cheating, plagiarism, collusion, and misrepresentation.

Cheating includes, but is not limited to:
- (1) Copying from the test paper (or other assignment) of another student,
- (2) Possession and/or use during a test of materials that are not authorized by the person giving the test,
- (3) Using, obtaining, or attempting to obtain by any means the whole or any part of a non-administered test, test key, homework solution, or computer program, or using a test that has been administered in prior classes or semesters without permission of the Faculty member,
- (4) Substituting for another person, or permitting another person to substitute for one’s self, to take a test,
- (5) Falsifying research data, laboratory reports, and/or other records or academic work offered for credit,
- (6) Using any sort of unauthorized resources or technology in completion of educational activities.

Plagiarism is the appropriation of material that is attributable in whole or in part to another source or the use of one’s own previous work in another context without citing that it was used previously, without any indication of the original source, including words, ideas, illustrations, structure, computer code, and other expression or media, and presenting that material as one’s own academic work being offered for credit or in conjunction with a program course or degree requirements.

Collusion is the unauthorized collaboration with another person in preparing academic assignments offered for credit or collaboration with another person to commit a violation of any provision of the rules on academic dishonesty, including disclosing and/or distributing the contents of an exam.

Misrepresentation is providing false grades or résumés; providing false or misleading information in an effort to receive a postponement or an extension on a test, quiz, or other assignment for the purpose of obtaining an academic or financial benefit for oneself or another individual or to injure another student academically or financially.

Withheld Grades Semester Grades Policy (A-54)
Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average.

Students with Disabilities
To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in the semester. Once verified,
ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices/.

Mental Health and Wellness Resources
If you are experiencing concerns, seeking help, SFA provides a variety of resources to support students’ mental health and wellness. Many of these resources are free, and all of them are confidential.

On-campus Resources:
The Dean of Students Office (Rusk Building, 3rd floor lobby) www.sfasu.edu/deanofstudents 936.468.7249 dos@sfasu.edu

SFA Human Services Counseling Clinic Human Services, Room 202 www.sfasu.edu/humanservices/139.asp 936.468.1041

The Health and Wellness Hub “The Hub” Location: corner of E. College and Raguet St. To support the health and well-being of every Lumberjack, the Health and Wellness Hub offers comprehensive services that treat the whole person – mind, body and spirit. Services include:

- Health Services
- Counseling Services
- Student Outreach and Support
- Food Pantry
- Wellness Coaching
- Alcohol and Other Drug Education

www.sfasu.edu/thehub 936.468.4008 thehub@sfasu.edu

Crisis Resources:
Burke 24-hour crisis line: 1.800.392.8343
National Suicide Crisis Prevention: 9-8-8
Suicide Prevention Lifeline: 1.800.273.TALK (8255)
Crisis Text Line: Text HELLO to 741-741

Course Calendar
Dates may change at the discretion of the instructor. Should a date change be required, it will be announced on the course homepage under the News tab and/or via d2l email. Print the Course Calendar and check it frequently to avoid missing deadlines. Please note: 12:00 p.m. = noon, 12:00 a.m. = midnight. Lab assignments and due dates are highlighted in blue.

<table>
<thead>
<tr>
<th>Start Date</th>
<th>Module</th>
<th>Assignments</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 13</td>
<td>Getting Started/ Course Information</td>
<td>Read the Start Here! Module Print the Course Calendar Introduce yourself on the “Getting to Know Me” discussion board Take the Syllabus and Course Information Quiz</td>
<td>March 24</td>
</tr>
<tr>
<td>Date</td>
<td>Module</td>
<td>Task</td>
<td>Due Date</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>March 16</td>
<td>Getting Started/Laboratory Procedures</td>
<td>Read the Start Here! Laboratory Procedures
Order the laboratory kit from SFA Barnes & Noble
Take the Laboratory Procedures Quiz</td>
<td>March 24</td>
</tr>
<tr>
<td>March 16</td>
<td>Earth in Context/Geologic Time</td>
<td>Read the module content
Complete the EIC/GT Quiz
Participate in the EIC/GT Discussions</td>
<td>March 24</td>
</tr>
<tr>
<td>March 16</td>
<td>Lab 1 – Geologic Time</td>
<td>Read the laboratory module content
Complete the laboratory exercises
Complete Laboratory Quiz 1 – Geologic Time</td>
<td>March 24</td>
</tr>
<tr>
<td>March 16</td>
<td>Minerals and Native Elements</td>
<td>Read the module content
Complete the Minerals and Native Elements discussion post and quiz</td>
<td>March 24</td>
</tr>
<tr>
<td>March 16</td>
<td>Lab 2 – Minerals and Native Elements</td>
<td>Read the laboratory module content
Complete the laboratory exercises
Complete Laboratory Quiz 2 – Minerals</td>
<td>March 24</td>
</tr>
<tr>
<td>March 25</td>
<td>Lecture Exam 1</td>
<td>Earth in Context, Geologic Time, Minerals</td>
<td>March 25</td>
</tr>
<tr>
<td>March 23</td>
<td>Intrusive Igneous Rocks</td>
<td>Read the module content
Complete the Intrusive Igneous Rocks discussion post and quiz</td>
<td>March 31</td>
</tr>
<tr>
<td>March 23</td>
<td>Lab 3 – Igneous Rocks</td>
<td>Read the laboratory module content
Complete the laboratory exercises
Complete Laboratory Quiz 3 – Igneous Rocks</td>
<td>March 31</td>
</tr>
<tr>
<td>March 23</td>
<td>Weathering, Erosion and Sedimentary Rocks</td>
<td>Read the module content.
Complete the Sedimentary Rocks Quiz and Weathering and Erosion discussion</td>
<td>March 31</td>
</tr>
<tr>
<td>March 23</td>
<td>Lab 4 – Sediments and Sedimentary Rocks</td>
<td>Read the laboratory module content
Complete the laboratory exercises
Complete Laboratory Quiz 4 – Sediments and Sedimentary Rocks</td>
<td>March 31</td>
</tr>
<tr>
<td>March 30</td>
<td>Metamorphic Rocks</td>
<td>Read the module content.
Complete the Metamorphic Rocks discussion post and quiz</td>
<td>April 7</td>
</tr>
<tr>
<td>March 30</td>
<td>Lab 5 – Metamorphic Rocks</td>
<td>Read the laboratory module content
Complete the laboratory exercises
Complete Laboratory Quiz 5 – Metamorphic Rocks</td>
<td>April 7</td>
</tr>
<tr>
<td>April 8</td>
<td>Lecture Exam 2</td>
<td>Igneous, Sedimentary and Metamorphic Rocks</td>
<td>April 8</td>
</tr>
<tr>
<td>April 11</td>
<td>Lab Midterm</td>
<td>Labs 1-5</td>
<td>April 11</td>
</tr>
<tr>
<td>Unit 3</td>
<td>Earth Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 30</td>
<td>Plate Tectonics</td>
<td>Read the module content</td>
<td>April 7</td>
</tr>
<tr>
<td>Date</td>
<td>Activity</td>
<td>Details</td>
<td>Due Date</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>April 6</td>
<td>Lab 6 – Plate Tectonics and Natural Resources</td>
<td>Complete the Plate Tectonics discussion post and quiz</td>
<td>April 7</td>
</tr>
<tr>
<td>April 6</td>
<td>Volcanoes, Earthquakes</td>
<td>Read the module content</td>
<td>April 14</td>
</tr>
<tr>
<td>April 6</td>
<td>Lab 7 - Earthquakes</td>
<td>Read the laboratory module content and complete the laboratory exercises</td>
<td>April 14</td>
</tr>
<tr>
<td>April 6</td>
<td>Rock Deformation and Geohazards</td>
<td>Read the module content</td>
<td>April 14</td>
</tr>
<tr>
<td>April 6</td>
<td>Lab 8 – Geohazards</td>
<td>Read the laboratory module content and complete the laboratory exercises</td>
<td>April 14</td>
</tr>
<tr>
<td>April 15</td>
<td>Exam 3</td>
<td>Plate Tectonics, Volcanoes, Earthquakes, Rock Deformation and Geohazards</td>
<td>April 15</td>
</tr>
<tr>
<td>April 13</td>
<td>Fossil Fuels</td>
<td>Read the module content</td>
<td>April 21</td>
</tr>
<tr>
<td>April 13</td>
<td>Lab 9 – Fossil Fuels</td>
<td>Read the laboratory module content and complete the laboratory exercises</td>
<td>April 21</td>
</tr>
<tr>
<td>April 13</td>
<td>Mineral Resources</td>
<td>Read the module content</td>
<td>April 21</td>
</tr>
<tr>
<td>April 13</td>
<td>Lab 10 – Mineral Resources</td>
<td>Read the laboratory module content and complete the laboratory exercises</td>
<td>April 21</td>
</tr>
<tr>
<td>April 20</td>
<td>Water Resources</td>
<td>Read the module content</td>
<td>April 28</td>
</tr>
<tr>
<td>April 20</td>
<td>Lab 11 – Water Resources</td>
<td>Read the laboratory module content and complete the laboratory exercises</td>
<td>April 28</td>
</tr>
<tr>
<td>April 20</td>
<td>Soil Resources</td>
<td>Read the module content</td>
<td>April 28</td>
</tr>
<tr>
<td>Date</td>
<td>Task</td>
<td>Due Date</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>April 28</td>
<td>Lab 12 – Soil Resources Read the laboratory module content Complete the laboratory exercises Upload Soil Resources Presentation and soil report to the Dropbox</td>
<td>April 28</td>
<td></td>
</tr>
<tr>
<td>April 29</td>
<td>Exam 4 Fossil Fuels, Mineral Resources, Water Resources, Soil Resources</td>
<td>April 29</td>
<td></td>
</tr>
<tr>
<td>Unit 5 – Earth and Society</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 27</td>
<td>Alternative Energy Read the module content Participate in the Alternative Energy discussion</td>
<td>May 5</td>
<td></td>
</tr>
<tr>
<td>April 20</td>
<td>Lab 13 – Alternative Energy Participate in the Alternative Energy Group Project Upload your position statement to the dropbox Complete the Group Participation Survey</td>
<td>May 5</td>
<td></td>
</tr>
<tr>
<td>April 27</td>
<td>Populations and Resources Read the module content Participate in the Populations and Resources discussion</td>
<td>May 5</td>
<td></td>
</tr>
<tr>
<td>May 2</td>
<td>Laboratory Final Exam Plate Tectonics and Natural Resources, Earthquakes, Geohazards, Fossil Fuels, Mineral Resources, Water Resources, Soil Resources (Labs 6-12)</td>
<td>May 2</td>
<td></td>
</tr>
<tr>
<td>May 6</td>
<td>Exam 5 Alternative Energy, Populations and Resources</td>
<td>May 6</td>
<td></td>
</tr>
</tbody>
</table>