ENGR 4270 – Engineering Capstone Design II (Required)

Course Description:
Two semester hours. The capstone project initiated in ENGR 4260 is taken from a prototype to a finished project. The project then undergoes laboratory testing and evaluation. Students present their results on a research poster and in oral presentations.

Prerequisites: ENGR 4260
Co-Requisites: None

Credits: 2 Hours
(Lecture: 3 Hours, Laboratory: 0 Hours)

Instructor: Hacer Varol

Textbook: None required

Topics Covered:
Prototype construction and experimental testing, problem solving and teamwork skills, Information gathering techniques, failure modes and effect analysis, tolerances in design, engineering ethics, computer aided design and engineering, prototyping methods.

Course Learning Outcomes
By the end of the course, a successful student will be able to:

- Demonstrate knowledge for engineering codes governing detailed design. (SO-7)
- Create a final detailed design from a concept and give ideal methods for widespread application for design in current market. (SO-2)
- Develop engineering tests for prototype and incorporate findings into final design. (SO-6)
- Show knowledge of current design methods and apply those to engineering design. (SO-4)
- Show how final design can be marketed and utilized in society. (SO-4)
• Show understanding of ethical responsibilities of an engineer in use of final design. (SO-4)
• Collaborate with engineers from other disciplines to develop a detailed design from a concept. (SO-5)
• Present technical information to others. (SO-3)
• Demonstrate skill in computer aided engineering software to produce engineering drawings. (SO-2)

Student Outcomes
Graduates of the program will:

• an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

• an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

• an ability to communicate effectively with a range of audiences

• an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgements, which must consider the impact of engineering solutions in global, economic, environmental, and social contexts

• an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

• an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

• an ability to acquire and apply new knowledge as needed, using appropriate learning strategies