Course Description:
Course involves theory and application of energy methods in engineering; conservation of mass and energy; energy transfer by heat, work and mass; thermodynamic properties; analysis of open and closed systems; the second law of thermodynamics; and entropy, gas, vapor and refrigeration cycles. Prerequisite: PHYS 2326

Prerequisites: PHYS 2326

Co-Requisites: None

Credits: 3 Hours (Lecture: 3 Hours, Laboratory: 0 Hours)

Instructor: Christopher J. Aul

Supplemental Materials: None

Topics Covered:
Applications of energy methods in engineering; conservation of mass and energy; energy transfer by heat, work and mass; thermodynamic properties; analysis of open and closed systems; the second law of thermodynamics; and entropy, gas, vapor and refrigeration cycles.

Course Learning Outcomes
By the end of the course, a successful student will be able to:
1. Understand basic thermo-physical properties. (SO-1)
2. Apply First Law of Thermodynamics to engineering problems. (SO-1)
3. Understand thermodynamic property diagrams. (SO-1)
4. Determine thermodynamic properties using various equations of state. (SO-1)
5. Solve problems requiring First Law analysis to closed systems. (SO-1)
6. Solve problems requiring First Law analysis to control volume systems. (SO-1)
7. Apply the Second Law of Thermodynamics to determine the performance limitations of a given thermodynamic system. (SO-1)
8. Understand entropy balance for both closed and control volume systems. (SO-1)
9. Analyze the Carnot Cycle and associate to real-world applications. (SO-1)

Understand the following gas power cycles:
10. Otto cycle. (SO-1)
11. Diesel cycle. (SO-1)
12. Stirling and Ericsson cycles. (SO-1)
13. Brayton cycle. (SO-1)

Student Outcomes
Graduates of the program will show:
1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

C. Aul

ENGR 3301 – Principles of Thermodynamics
aulcj@sfasu.edu
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
Course Outline

Engineering 3301 – Fall 2023
Principles of Thermodynamics
Department of Physics, Engineering, and Astronomy; Stephen F. Austin State University

Instructor: Christopher J. Aul, PhD
Email:aulcj@sfasu.edu
Office: Cole STEM Building, 207D
Phone: 936-468-1512

Student Hours: Mon Wed & Thur: 12-1pm, Tues: 12-2pm, or by appointment
Class Meetings: MW 1:2:15pm, STEM 306 in-person only
Course Home Page: http://d2l.sfasu.edu

Course Description
Course involves theory and application of energy methods in engineering; conservation of mass and energy; energy transfer by heat, work and mass; thermodynamic properties; analysis of open and closed systems; the second law of thermodynamics; and entropy, gas, vapor and refrigeration cycles. **Prerequisite:** PHYS 2326

Text and Materials

Thermodynamics: An Engineering Approach

It is necessary that you acquire this edition of the text WITH ONLINE ACCESS (McGraw Hill CONNECT). Homework will be assigned through CONNECT so any version of the text you obtain make sure it has CONNECT access included.

A 14-day free trial is available from the beginning of class if you are unable to obtain the text on the first day.

Other materials needed in the course:

- Engineering paper that is grid ruled (assignment submission)
- Scientific calculator or better (for exams and homework)
- Ruler, compass, any other drafting tools for control volume sketches

Grading Policy

Exam 1 15%
Exam 2 15%
Exam 3 15%
Course Project 10%
CONNECT Online Homework 15%
Reading Quizzes 5%
In-Class Problem Solving 10%
Final Exam 15%

Letter grades are based on the following ranges:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90.0 – 100%</td>
</tr>
<tr>
<td>B</td>
<td>80.0 - 89.9%</td>
</tr>
<tr>
<td>C</td>
<td>70.0 - 79.9%</td>
</tr>
<tr>
<td>D</td>
<td>60.0 - 69.9%</td>
</tr>
<tr>
<td>F</td>
<td>< 60.0%</td>
</tr>
</tbody>
</table>

The grade is based on three mid-term exams, one comprehensive final exam, a course project, homework which will be assigned in class, as well as in-class assignments. Exams will be graded on a 100 point scale, including the final. It is expected that the student will keep a notebook for this course.
Attendance Policy
Attendance will be taken at the beginning of class by instructor. If you have **3 unexcused absences** then your final grade will be reduced one letter grade. If you have **4 unexcused absences**, you will receive an “F” in the course. A written and signed notice is required for an excused absence within three class days of the absence. Instructor checks for attendance at the beginning of class according to the official NIST US CST time: http://www.time.gov/. Failure to show up to class on time results in a tardy (which can be excused if you show excuse for your tardy to instructor that day). Accruing **2 tardy marks** results in an unexcused absence.

Students who miss class without approval of their instructor will receive a grade of zero on the missed assignment. Authorized absences must be approved by your instructor in advance of the absence, unless you have an emergency or illness. Make-up work must be completed outside of normal class hours within one week following an excused absence. It is your responsibility to see the instructor to make arrangements for make-up work if you have an excused absence.

Course Requirements

This class assumes that you will be spending at least 6 hours per week outside of course time working on course material. A required 150 minutes of asynchronous material will be covered using course lectures and a course project.

Exams
There will be three mid-term exams and a final, each covering a specific set of lecture, text, and homework material that will be communicated to the student in class. The final exam will be comprehensive to the material covered in the course. The tentative dates of these exams are listed in the course outline shown in this document. Exams will be given outside of class time to allow for extra time to sufficiently solve problems. Inability to attend these exam times due to conflicts with other classes shall be communicated to the professor within the first week of class, otherwise the times will not change.

Students will have one week after each exam to review the exams and discuss the grades. No make-up exams will be given except in the case of an excused absence. An official written notice is required for an excused absence within three days of the exam. Any makeup exam must be taken within three days of the missed exam. The style of exam as well as allowed materials for the four exams will be communicated to the student in-class.

CONNECT Homework Assignments
Homework will be assigned from the required text for the course. Homework assignments will be given to the student in class along with the due dates. Complete homework using the following guidelines:
- Always restate the problem and draw a diagram if needed
 - Label your **engineering sketch** neatly with given and unknown values
- Make sure to outline all **knowns and unknowns**
- Use engineering style paper that is grid ruled
- Use only one side of the paper (typically the side facing you on the pad)
- Include your name and page number on each page
- Use a **ruler** to set up your diagrams or in drawing elements
- Show the progression of your solution, clearly identify appropriate **units** when necessary
- Indicate final answers by placing a **surrounding box**, don’t forget the **units**!!

Homework will be submitted via the McGraw-Hill CONNECT system. Late work will be accepted although an increasing penalty will occur based on when the assignment is submitted after the due date and time. These details can be found on the CONNECT website submission page. Please be sure to **SUBMIT** your assignment before the due date and time.
In-Class Problem Solving
All in-class assignments must be completed by the end of the class period. This may include working out example or homework problems. Problems assigned in this manner will be graded by the instructor during the same class period. In general, these problems will be pass/fail with no partial work accepted. The student will be able to replace their TWO lowest grades for these assignments by working extra problems in an oral examination setting. The grade for these assignments and participation will be averaged together to give 10% of your final grade. It is the discretion of the instructor to grant additional time if deemed necessary.

Course Project
Details for the course project will be provided in class. The project will cover concepts discussed in class. The scoring rubric for the project will be provided and will consist of 10% of the final grade for the student.

Reading Quizzes
It is imperative that you read the text book for this course. Course lecture videos will also be posted. There will be a series of reading and lecture quizzes posted on D2L covering specific sections of the text reading. The due dates for these reading quizzes will be communicated to the student in class and on D2L. In general, the reading quizzes should be completed before the material is covered in class.

Email Communication
All official course communication will be made using your SFA email account. You must use your SFA email account for all communications. You will be notified via your SFA email account about grades and attendance. You can look up your SFA email account or setup email forwarding using this link: http://www.sfasu.edu/mysfa/o365/forwarding-email/

It is important to practice good email communications in college courses. Use “ENGR 3301” in the subject of your email messages. Use complete sentences and capitalization when appropriate. The body of your email messages should begin with your instructor’s name and end with your name.

The following is required as per policy:

Academic Integrity (4.1)
The Code of Student Conduct and Academic Integrity outlines the prohibited conduct by any student enrolled in a course at SFA. It is the responsibility of all members of all faculty, staff, and students to adhere to and uphold this policy.

Articles IV, VI, and VII of the new Code of Student Conduct and Academic Integrity outline the violations and procedures concerning academic conduct, including cheating, plagiarism, collusion, and misrepresentation. Cheating includes, but is not limited to: (1) Copying from the test paper (or other assignment) of another student, (2) Possession and/or use during a test of materials that are not authorized by the person giving the test, (3) Using, obtaining, or attempting to obtain by any means the whole or any part of a non-administered test, test key, homework solution, or computer program, or using a test that has been administered in prior classes or semesters without permission of the Faculty member, (4) Substituting for another person, or permitting another person to substitute for one’s self, to take a test, (5) Falsifying research data, laboratory reports, and/or other records or academic work offered for credit, (6) Using any sort of unauthorized resources or technology in completion of educational activities.

Plagiarism is the appropriation of material that is attributable in whole or in part to another source or the use of one’s own previous work in another context without citing that it was used previously, without any indication of the original source, including words, ideas, illustrations, structure, computer code, and other expression or media, and presenting that material as one’s own academic work being offered for credit or in conjunction with a program course or degree requirements.

Collusion is the unauthorized collaboration with another person in preparing academic assignments offered for credit or collaboration with another person to commit a violation of any provision of the rules on academic dishonesty, including disclosing and/or distributing the contents of an exam.

Misrepresentation is providing false grades or résumés; providing false or misleading information in an effort to receive a postponement or an extension on a test, quiz, or other assignment for the purpose of obtaining an academic or financial benefit for oneself or another individual or to injure another student academically or financially.

C. Aul ENGR 3301 – Principles of Thermodynamics aulcj@sfasu.edu
Withheld Grades Semester Grades Policy (5.5)
Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the coursework because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course to compute the grade point average. For additional information, go to https://www.sfasu.edu/policies/course-grades-5.5.pdf.

Students with Disabilities
To obtain disability-related accommodations, alternate formats, and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services promptly may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices/.

Student Wellness and Well-Being
SFA values students’ overall well-being, mental health and the role it plays in academic and overall student success. Students may experience stressors that can impact both their academic experience and their personal well-being. These may include academic pressure and challenges associated with relationships, emotional well-being, alcohol and other drugs, identities, finances, etc.

If you are experiencing concerns, seeking help, SFA provides a variety of resources to support students’ mental health and wellness. Many of these resources are free, and all of them are confidential.

On-campus Resources:
The Dean of Students Office (Rusk Building, 3rd floor lobby)
www.sfasu.edu/deanofstudents
936.468.7249
dos@sfasu.edu

SFA Human Services Counseling Clinic Human Services, Room 202
www.sfasu.edu/humanservices/139.asp
936.468.1041

The Health and Wellness Hub “The Hub”
Location: corner of E. College and Raguet St.

To support the health and well-being of every Lumberjack, the Health and Wellness Hub offers comprehensive services that treat the whole person – mind, body and spirit. Services include:
- Health Services
- Counseling Services
- Student Outreach and Support
- Food Pantry
- Wellness Coaching
- Alcohol and Other Drug Education
www.sfasu.edu/thehub
936.468.4008
thehub@sfasu.edu

Crisis Resources:
- Burke 24-hour crisis line: 1.800.392.8343
- National Suicide Crisis Prevention: 9-8-8
- Suicide Prevention Lifeline: 1.800.273.TALK (8255)
- johCrisis Text Line: Text HELLO to 741-741
ENGR 3301 – Principles of Thermodynamics Class Schedule

Course schedule is *tentative* and subject to change depending on pace of the class.

<table>
<thead>
<tr>
<th>Week</th>
<th>Date (Monday)</th>
<th>Topic</th>
<th>Reading</th>
<th>Important dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/28/2023</td>
<td>Introduction to thermodynamics</td>
<td>CH 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9/4/2023</td>
<td>First law of thermodynamics</td>
<td>CH 2</td>
<td>Exams held on Tuesdays from 5:30-7:30pm for following weeks:</td>
</tr>
<tr>
<td>3</td>
<td>9/11/2023</td>
<td>Energy analysis</td>
<td>CH 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9/18/2023</td>
<td>Properties</td>
<td>CH 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9/25/2023</td>
<td>Property diagrams, equations of state</td>
<td>CH 3</td>
<td>Exam 1 (CH 1-3)</td>
</tr>
<tr>
<td>6</td>
<td>10/2/2023</td>
<td>Closed systems</td>
<td>CH 4</td>
<td>Project Update</td>
</tr>
<tr>
<td>7</td>
<td>10/9/2023</td>
<td>Closed systems, cont.</td>
<td>CH 4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10/16/2023</td>
<td>Control volumes</td>
<td>CH 5</td>
<td>Exam 2 (CH 3&4)</td>
</tr>
<tr>
<td>9</td>
<td>10/23/2023</td>
<td>Control volumes, cont.</td>
<td>CH 5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10/30/2023</td>
<td>Second law of thermodynamics</td>
<td>CH 6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11/6/2023</td>
<td>Entropy</td>
<td>CH 7</td>
<td>Exam 3 (CH 5&6)</td>
</tr>
<tr>
<td>12</td>
<td>11/13/2023</td>
<td>Entropy, cont.</td>
<td>CH 7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11/20/2023</td>
<td>Thanksgiving Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11/27/2023</td>
<td>Gas power cycles</td>
<td>CH 10</td>
<td>Project Due</td>
</tr>
<tr>
<td>15</td>
<td>12/4/2023</td>
<td>Gas power cycles, cont.</td>
<td>CH 10</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>12/13/2023</td>
<td>Final Exam, Comprehensive but skewed to CH 7&10, 1-3pm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to register for connect:

First log on to D2L via d2l.sfasu.edu and select your course CONTENT:

Then select the McGraw-Hill Connect DI link in the table of contents:

Then select the “Go to my Connect section”:
This will take you to the connect portal, to continue you will need to enter your SFA email address.

If you do not have a Connect account, you will be prompted to create an account.

Use your SFA email address when creating an account and be sure to use the name on your ID to be paired with my grading system – this way I will be able to get your homework graded correctly.

You have three registration options.

1. **Connect Code:** Enter Connect access code and click Redeem.
2. **Purchase Online:** Click Buy It to use a credit card or PayPal.
3. **Temporary Access:** Click Access Now for two-week access.
You have successfully joined the class. Click Go To Connect.

Need Help?
Tech Support & FAQ
Call: (800) 331-5094
Email & Chat: mhhe.com/support
Monday–Thursday: 24 hours
Friday: 12 a.m. – 9 p.m. EST
Saturday: 10 a.m. – 8 p.m. EST
Sunday: 12 p.m. –12 a.m. EST