Course Syllabus
Fall 2023
CHEM 1312-001 & 002
General Chemistry II

Course Description: Equilibrium, kinetics, redox, descriptive chemistry and radiochemistry.

Number of Credit Hours: 3 semester hours

Course Prerequisites and Corequisites: Prerequisites: CHEM 1311, 1111L, and MTH 1314. Corequisite: CHEM 1312L if enrolled in other courses on campus.

Program Learning Outcomes: There are no specific program learning outcomes for this major addressed in this course. This course is a general education core curriculum course and a service course.

Core Objectives (CO):
1. Critical Thinking: to include creative thinking, innovation, inquiry and analysis, evaluation and synthesis of information.
2. Communication Skills: to include effective development, interpretation and expression of ideas through written, oral, and visual communication.
3. Empirical and Quantitative Skills: to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.
4. Teamwork: to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal.

Course Objective: To provide students with an explanation of the basic principles of chemistry and to apply these principles to problem solving involving critical thinking.

Student Learning Outcomes: Upon completion of this course, the students are expected to
- apply chemistry concepts using critical thinking skills and the scientific method to analyze and evaluate information to reach conclusions within problem sets and lab experiments.
- use communication skills to demonstrate their interpretation and analysis of scientific data.
- apply logic, quantitative reasoning, and pattern recognition to analyze and evaluate numerical data/observable facts to reach conclusions within problem sets and lab experiments.
- demonstrate the ability to cooperate within groups to gather results of an experiment, analyze data, and draw conclusions using communication skills.

This course meets educator preparation standards for one or more certification programs; a complete listing of all the educator preparation standards this course meets can be found at: https://sfasu.edu/docs/jacksteach/jacksteach-standards-alignment-chart.xlsx
General Chemistry II
CHEM 1312 – 001 & 002
Time of Meeting: MWF 9:00 am – 9:50 am & TR 11 am - 12.15 am (Section 002)
Semester: Fall 2023 (Face-to-Face)
August 28, 2023 - December 13, 2023
(Students must be enrolled in co-requisite CHEM 1112 Lab)

<table>
<thead>
<tr>
<th>Name</th>
<th>Chemistry and Biochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department</td>
<td>onchokekk@sfasu.edu (use this email for timely response)</td>
</tr>
<tr>
<td>Email</td>
<td>Desire2Learn: http://d2l.sfasu.edu</td>
</tr>
<tr>
<td>Phone</td>
<td>936-468-2386</td>
</tr>
<tr>
<td>Office</td>
<td>Math 118</td>
</tr>
<tr>
<td>Office Hours</td>
<td>M 4 - 5; T 10- 11; W 12 - 1; R 10 – 10.50 am, 4-5 pm</td>
</tr>
<tr>
<td></td>
<td>via Zoom, or walk in, or by appointment</td>
</tr>
<tr>
<td>Lecture times</td>
<td>MWF 9 - 9.50 am &11 am -12.15 pm, in MATH building Rm. 132</td>
</tr>
</tbody>
</table>

Catalog Description: General Chemistry II (1312) – Equilibrium, kinetics, redox, and descriptive chemistry.

Zoom Meeting Times for Faculty:
Kefa Onchoke is inviting you to a scheduled Zoom meeting.
Topic: CHEM1312-001 & CHEM1312-002

Join Zoom Meeting
https://sfasu.zoom.us/j/93501321850?pwd=NklONW56S0M4bDA3UVZPUFlJcldUQT09

Meeting ID: 935 0132 1850
Passcode: 428948

E-mail Dr. Onchoke for any question with regard to the course. It is important to have access to outlook as well for efficient communications.

Office Hours: M 4 - 5; T 10- 11; W 12 - 1; R 10 – 10.50 am, F 4 - 5 pm. By email, or walk in and via zoom video conferencing. You can email professor to set up a Zoom meeting. An ID and password will be provided for any appointed meeting.

Times: There are only Face-to-Face meetings for this course. All due dates in the syllabus and D2L are based on CDT/CST (Texas) time zones. Late assignments or extensions will not be considered due to difference in time zones.

OnLine Support: http://d2l.sfasu.edu

Course Description: Introductory Chemistry. Introduction to the principles and concepts of chemical thought. Co-requisite: CHEM 1105L. Prerequisite: eligibility for MTH 1314. (Algebra).
This course is intended for non-chemistry majors. Chemistry and science majors need to take CHEM 1311/1312.
This course is for 3 credits and typically meets for 300 minutes each week for five weeks plus meets for a 2-hour final examination. Students have significant daily reading and homework assignments involving critical thinking and quantitative reasoning. Students are tested over the material via quizzes and several exams during the semester including a comprehensive final exam. These activities average at a minimum 12 hours of work each week to prepare outside of classroom hours.
PREREQUISITES: CHE 1311 and 1111L

TEXT AND MATERIALS:
Note: Any chemistry textbook can be used as a resource to supplement the PowerPoint slides.

Suggested textbooks
1. Burge, Julia; Chemistry, 5th edition, McGraw Hill (book only; access to ALEKS HW system is not needed)
 Or
2. OpenStax chemistry 2e (Chemistry 2e – OpenStax): https://openstax.org/details/books/chemistry-2e. This is a free downloadable Textbook.

Materials
4. Scientific calculator (non-graphing and non-programmable); for example, SHARP EL-501WBBK, CASIO 115, Texas Instrument 30 XIIS. No programming or graphing calculators are to be used in exams and/or quizzes.

My Moodle website: (For online Homework): Onchokechemistry.com
 https://onchokechemistry.com/moodle2

E-mail Dr. Onchoke for any question with regard to the course.

MENTAL HEALTH AND WELLNESS STATEMENT
SFASU values students’ mental health and the role it plays in academic and overall student success. SFA provides a variety of resources to support students' mental health and wellness. Many of these resources are free, and all of them are confidential.

On-campus Resources:
SFASU Counseling Services
www.sfasu.edu/counselingservices
3rd Floor Rusk Building
936-468-2401

SFASU Human Services Counseling Clinic
www.sfasu.edu/humanservices/139.asp
Human Services Room 202
936-468-1041

Crisis Resources:
Burke 24-hour crisis line 1(800) 392-8343
Suicide Prevention Lifeline 1(800) 273-TALK (8255)
Crisis Text Line: Text HELLO to 741-741
COURSE OBJECTIVES: To provide students with an understanding of the general principles of inorganic chemistry and the ability to apply these principles to problem solving.

STUDENT LEARNING OUTCOMES: The student is expected to master and apply the following concepts to problem solving:

- Principles of reaction rates: reaction rates and concentration, reactant concentration with time, and reaction mechanisms.
- Principles of equilibrium: the equilibrium constant expression, determination of equilibrium constants, applications of the equilibrium constant to problem solving, and the effect of changes in conditions upon an equilibrium system.
- Principles of solubility: precipitate formation, use of the solubility product constant (K_sp) to predict solubility, dissolution of precipitates, and qualitative analysis.
- Principles of thermodynamics: enthalpy and enthalpies of formation, the first law of thermodynamics, entropy and the second law of thermodynamics, the third of thermodynamics, and free energy.
- Principles of electrochemistry: voltaic and electrolytic cells, effect of concentration on cell voltage, standard cell potentials, and batteries.

NOTE: All Online assignments will be done via the Moodle website https://onchokechemistry.com/moodle2/

COURSE CALENDAR: Course Material from the text will be covered in the following order. Exam

Review: Key points in General Chemistry I and Chapter 27 Redox Reactions
PowerPoint: Review

<table>
<thead>
<tr>
<th>Video</th>
<th>HW</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review HW 1 (32:02)</td>
<td></td>
<td>significant figures (Review pgs 1-7, 22-25 (Brown))</td>
</tr>
<tr>
<td>Review HW 2 (63:39)</td>
<td></td>
<td>HW 2 – nomenclature (Review pgs 8-27)</td>
</tr>
<tr>
<td>Review HW 3 (16:04)</td>
<td></td>
<td>HW 3 – molar mass / molarity (Review pgs 28-32)</td>
</tr>
<tr>
<td>Online Homework</td>
<td>Due 9/11</td>
<td></td>
</tr>
</tbody>
</table>

30 Chemical Kinetics
PowerPoint: Chapter 30

<table>
<thead>
<tr>
<th>Video</th>
<th>HW</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 30 HW 5 (25:07)</td>
<td></td>
<td>HW 5 – reaction rates (Chapter 30 pgs 1-15)</td>
</tr>
<tr>
<td>HW</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>HW 6</td>
<td>– reaction order (Chapter 30 pgs 16-26)</td>
<td></td>
</tr>
<tr>
<td>HW 7</td>
<td>– determining rate law (Chapter 30 pgs 27-34)</td>
<td></td>
</tr>
<tr>
<td>HW 8</td>
<td>– rate constant k units (Chapter 30 pg 35)</td>
<td></td>
</tr>
<tr>
<td>HW 9</td>
<td>– first order integrated rate law (Chapter 30 pgs 36-45)</td>
<td></td>
</tr>
<tr>
<td>HW 10</td>
<td>– zero and second order rate laws (Chapter 30 pgs 46-47)</td>
<td></td>
</tr>
<tr>
<td>HW 11</td>
<td>– half-life (Chapter 30 pgs 48-52)</td>
<td></td>
</tr>
<tr>
<td>HW 12</td>
<td>– activation energy, catalysis, intermediates (Chapter 30 pgs 53-70)</td>
<td></td>
</tr>
<tr>
<td>HW 13</td>
<td>– elementary steps and mechanisms (Chapter 30 pgs 71-90)</td>
<td></td>
</tr>
</tbody>
</table>

Online Homework

EXAM I: Wednesday, Sept. 27 from 6:00 - 8:00 pm - Room to be announced

31 Chemical Equilibrium

PowerPoint: Chapter 31

<table>
<thead>
<tr>
<th>HW</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW 14</td>
<td>– chemical equilibrium (Chapter 31 pgs 1-20)</td>
</tr>
<tr>
<td>HW 15</td>
<td>– determination of K (Chapter 31 pgs 21-30)</td>
</tr>
<tr>
<td>HW 16</td>
<td>– manipulating K (Chapter 31 pgs 31-34)</td>
</tr>
<tr>
<td>HW 17</td>
<td>– determination of K (heterogeneous) (Chapter 31 pgs 35-36)</td>
</tr>
<tr>
<td>HW 18</td>
<td>– direction of reaction, Q (Chapter 31 pgs 37-43)</td>
</tr>
<tr>
<td>HW Assignment</td>
<td>Details and Due Date</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>video: Chapter 31 HW 19 (17:30)</td>
<td>HW 19 – calculation of equil partial pressures (part I) (Chapter 31 pgs 44-57) Due 10/2</td>
</tr>
<tr>
<td>video: Chapter 31 HW 20 (6:24)</td>
<td>HW 20 – calc of equil partial pressures (part II) (Chapter 31 pgs 58-59) Due 10/7</td>
</tr>
<tr>
<td>video: Chapter 31 HW 21 (8:03)</td>
<td>HW 21 – calc of equil partial pressures (part III) (Chapter 31 pg 60) Due 10/7</td>
</tr>
<tr>
<td>video: Chapter 31 HW 22 (13:55)</td>
<td>HW 22 – calc of equil partial pressures (part IV) (Chapter 31 pgs 61-68) Due 10/8</td>
</tr>
<tr>
<td>video: Chapter 31 HW 23 (28:20)</td>
<td>HW 23 – LeChatelier’s Principle (Chapter 31 pgs 69-81) Due 10/8</td>
</tr>
<tr>
<td>Online Homework</td>
<td>Due 10/15</td>
</tr>
</tbody>
</table>

32 Acids and Bases

PowerPoint: Chapter 32

<table>
<thead>
<tr>
<th>HW Assignment</th>
<th>Details and Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>video: Chapter 32 HW 24 (39:08)</td>
<td>HW 24 – Bronsted-Lowry acids and bases (Chapter 32 pgs 1-21) Due 10/17</td>
</tr>
<tr>
<td>video: Chapter 32 HW 25 (39:52)</td>
<td>HW 25 – acid and base strengths (Chapter 32 pgs 22-35) Due 10/17</td>
</tr>
<tr>
<td>video: Chapter 32 HW 26 (36:56)</td>
<td>HW 26 – pH (Chapter 32 pgs 36-52) Due 10/14</td>
</tr>
<tr>
<td>video: Chapter 32 HW 27 (15:50)</td>
<td>HW 27 – pH of strong acids and bases (Chapter 32 pgs 53-55) Due 10/14</td>
</tr>
<tr>
<td>Online Homework</td>
<td>Due 10/29</td>
</tr>
</tbody>
</table>

EXAM II: Wednesday, Oct. 25 from 6:00 - 8:00pm

33 Acid-Base Equilibria

PowerPoint: Chapter 33

<table>
<thead>
<tr>
<th>HW Assignment</th>
<th>Details and Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>video: Chapter 33 HW 28 (17:47)</td>
<td>HW 28 – weak acid ionization constant, K_a (Chapter 33 pgs 1-10) Due 10/24</td>
</tr>
<tr>
<td>video: Chapter 33 HW 29 (45:41)</td>
<td>HW 29 – pH of weak acid (Chapter 33 pgs 11-25) Due 10/25</td>
</tr>
<tr>
<td>video: Chapter 33 HW 30 (28:22)</td>
<td>HW 30 – polyprotic acids (Chapter 33 pgs 26-37) Due 10/27</td>
</tr>
<tr>
<td>HW 31 – weak base ionization constant, K_b (Chapter 33 pgs 38-40)</td>
<td>Due 10/27</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HW 32 – pH of weak base (Chapter 33 pgs 41-46)</td>
<td>Due 10/29</td>
</tr>
<tr>
<td>HW 33 – acid and base properties of salt solutions (Chapter 33 pgs 47-59)</td>
<td>Due 10/29</td>
</tr>
<tr>
<td>HW 34 – relationship between K_a and K_b (Chapter 33 pgs 60-62)</td>
<td>Due 10/30</td>
</tr>
<tr>
<td>HW 35 – pH of salt solutions (Chapter 33 pgs 63-67)</td>
<td>Due 10/30</td>
</tr>
<tr>
<td>HW 36 – buffers (Chapter 33 pgs 68-76)</td>
<td>Due 10/30</td>
</tr>
<tr>
<td>HW 37 – preparation of a buffer (Chapter 33 pgs 77-83)</td>
<td>Due 10/30</td>
</tr>
<tr>
<td>HW 38 – strong acid and strong base titrations (Chapter 33 pgs 84-91)</td>
<td>Due 11/8</td>
</tr>
<tr>
<td>HW 39 – weak strong titrations (Chapter 33 pgs 92-97)</td>
<td>Due 11/8</td>
</tr>
</tbody>
</table>

Online Homework Due 11/12

Chapter 34: Solubility and Complex-Ion Equilibria

PowerPoint: Chapter 34

<table>
<thead>
<tr>
<th>HW 40 – solubility product constant, K_sp (Chapter 34 pgs 1-10)</th>
<th>Due 11/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW 41 – K_sp and water solubility (Chapter 34 pgs 11 - 16)</td>
<td>Due 11/14</td>
</tr>
<tr>
<td>HW 42 – K_sp and common-ion effect (Chapter 34 pgs 17-19)</td>
<td>Due 11/17</td>
</tr>
<tr>
<td>HW 43 – precipitation formation (Chapter 34 pgs 20 - 44)</td>
<td>Due 11/17</td>
</tr>
</tbody>
</table>

Online Homework Due 11/29

EXAM III: Wednesday, Nov. 15 from 6:00 - 8:00pm
29 Thermochemistry

PowerPoint: [Chapters 29 & 35](#)

- **video:** [Chapter 29 HW 44](#) (25:35)
 - HW 44 – First Law of Thermodynamics ([Chapters 29 & 35](#) pgs 1-12)

- **video:** [Chapter 29 HW 45](#) (16:30)
 - HW 45 – Hess' Law ([Chapters 29 & 35](#) pgs 13-18)

- **video:** [Chapter 29 HW 46](#) (13:56)
 - HW 46 – standard enthalpies of formation ([Chapters 29 & 35](#) pgs 19-23)

Online Homework

35 Chemical Thermodynamics

PowerPoint: [Chapters 29 & 35](#)

- **video:** [Chapter 35 HW 47](#) (23:12)
 - HW 47 – Second Law of Thermodynamics ([Chapters 29 & 35](#) pgs 24-34)

- **video:** [Chapter 35 HW 48](#) (42:23)
 - HW 48 – Gibbs Free Energy ([Chapters 29 & 35](#) pgs 35-54)

Online Homework

36 Electrochemistry

PowerPoint: [Chapter 36](#)

- **video:** [Chapter 36 HW 49](#) (82:28)
 - HW 49 – standard reduction potentials ([Chapter 36](#) pgs 1-41)

- **video:** [Chapter 36 HW 50](#) (43:32)
 - HW 50 – Nernst equation ([Chapter 36](#) pgs 42-61)

Online Homework

EXAM IV:

Wednesday Dec. 6 from 6:00 - 8:00pm

37 Nuclear Chemistry

PowerPoint: [Chapter 37](#)

- **video:** [Chapter 37 HW 51](#) (43:08)
 - HW 51 - nuclear chemistry ([Chapter 37](#) pgs 1-40)

Online Homework

Comprehensive Final – CHEM 1312-001: **Wednesday, Dec. 13, 8:00 a.m. - 10:00 a.m.**

CHEM 1312-002: **Tuesday,** Dec. 12, 10.30 am – 12.30 p.m.

MAKE-UP POLICY: Make-up exams can only be given for proven excuses.
Grading Policy:

4-one hour exams (100 pts per test) cumulative with emphasis on the material covered since last. These exams will be given on Sept. 27, Oct. 25, Nov. 15, and Dec. 6.

Final Exam – Comprehensive Final exam worth 200 pts. Exam will be given in Math 132 as per University schedule.

Homework – Homework will total 100 points (#points correct*100 / total points available). The homework assignments will be completed via Onchokechemistry.com with due dates assigned on a weekly basis. Any computer capable of connecting to the internet can assess the homework system at Onchokechemistry.com Enter your username and access code.

Quizzes (50 pts) – At least one quiz will be given per week.

Method of Evaluation: The final grade will be based upon percentage of points obtained from All the Exams and Quizzes:

<table>
<thead>
<tr>
<th>Exam Schedule</th>
<th>Points</th>
<th>Day/Date</th>
<th>Approximate Material Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam I</td>
<td>100</td>
<td>Wednesday, Sept. 27, 6 - 8pm</td>
<td>Review, Chapt. 20.1-20.2, Chaps. 14, 15</td>
</tr>
<tr>
<td>Exam II</td>
<td>100</td>
<td>Wednesday, Oct. 25, 6-8 pm</td>
<td>Chapt. 15, Chaps. 16</td>
</tr>
<tr>
<td>Exam III</td>
<td>100</td>
<td>Wednesday, Nov. 15, 6 - 8 pm</td>
<td>Chaps. 17</td>
</tr>
<tr>
<td>Exam IV</td>
<td>100</td>
<td>Wednesday, Dec. 6, 6 - 8 pm</td>
<td>19, 20 & 21</td>
</tr>
<tr>
<td>Moodle Homework (CHEM 1312)</td>
<td>100</td>
<td>Per syllabus</td>
<td>Assigned via Onchokechemistry.com</td>
</tr>
<tr>
<td>Quizzes</td>
<td>50</td>
<td>At least one Quiz per week</td>
<td></td>
</tr>
<tr>
<td>Comprehensive Final Exam</td>
<td>200</td>
<td>Wednesday, Dec. 13, 8:00 a.m. - 10:00 a.m. Tuesday, Dec. 12, 10.30 am – 12.30 p.m.</td>
<td>Comprehensive</td>
</tr>
</tbody>
</table>

Total 750

Grading scale - A = 90 - 100%; B = 80 – 89.99%; C = 70 – 79.99%; D = 60 – 69.99%; F = below 59.99%

Attendance Policy:

Attendance of class is mandatory. A total of four unexcused absences will result in the student being dropped from the class with a grade of "F". The exams will be given during the assigned times unless other arrangements are approved by the instructor prior to the scheduled exam time.

Academic Integrity (A-9.1):

The Code of Student Conduct and Academic Integrity outlines the prohibited conduct by any student enrolled in a course at SFA. It is the responsibility of all members of all faculty, staff, and students to adhere to and uphold this policy.

Articles IV, VI, and VII of the new Code of Student Conduct and Academic Integrity outline the violations and procedures concerning academic conduct, including cheating, plagiarism, collusion, and misrepresentation. Cheating includes, but is not limited to: (1) Copying from the test paper (or other assignment) of another student, (2) Possession and/or use during a test of materials that are not authorized by the person giving the test, (3) Using, obtaining, or attempting to obtain by any means the whole or any part of a non-administered test, test key, homework solution, or computer program, or using a test that has been administered in prior classes or semesters without permission of the Faculty member, (4) Substituting for another person, or permitting another person to substitute for one’s self, to take a test, (5) Falsifying research data, laboratory reports, and/or other records or academic work offered for credit, (6) Using any sort of unauthorized resources or technology in completion of educational activities.
Plagiarism is the appropriation of material that is attributable in whole or in part to another source or the use of one’s own previous work in another context without citing that it was used previously, without any indication of the original source, including words, ideas, illustrations, structure, computer code, and other expression or media, and presenting that material as one’s own academic work being offered for credit or in conjunction with a program course or degree requirements.

Collusion is the unauthorized collaboration with another person in preparing academic assignments offered for credit or collaboration with another person to commit a violation of any provision of the rules on academic dishonesty, including disclosing and/or distributing the contents of an exam.

Misrepresentation is providing false grades or résumés; providing false or misleading information in an effort to receive a postponement or an extension on a test, quiz, or other assignment for the purpose of obtaining an academic or financial benefit for oneself or another individual or to injure another student academically or financially.

Please read the complete policy at http://www.sfasu.edu/policies/academic_integrity.asp
Any student found cheating will be subject to the penalties as stated in the Student Code of Conduct handbook; including but not limited to a score of zero on exam, expulsion from the class or expulsion from the University.

WITHHELD GRADES SEMESTER GRADES POLICY (5.5):

Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the coursework because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course to compute the grade point average. For additional information, go to https://www.sfasu.edu/policies/course-grades-5.5.pdf

The circumstances precipitating the request must have occurred after the last day in which a student could withdraw from a course. Students requesting a WH must be passing the course with a minimum projected grade of C.

STUDENTS WITH DISABILITIES:

To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices/.

CLASSROOM BEHAVIOR POLICY: To ensure a classroom environment conducive to learning, any forms of classroom disruptions will not be tolerated (examples but not limited to – talking, use of cell phones/beepers, sleeping, reading other material, eating/drinking). Students who violate these rules will be asked to leave. Repeat offenders will be subject to disciplinary action in accordance with University policies as described in the Code of Student Conduct.