Introductory to Chemistry I
CHEM 1305 - 300 (Previous Course # 111)
Time of Meeting: MTWR 8:00 am – 9:45 pm
Semester: Summer I 2021 (First 6-week session, Online)
(Students must be enrolled in CHE 1105 Lab)

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Email</th>
<th>Desire2Learn</th>
<th>Phone</th>
<th>Office</th>
<th>Office Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chemistry and Biochemistry</td>
<td>onchokekk@sfasu.edu (use this email for timely response)</td>
<td>http://d2l.sfasu.edu</td>
<td>936-468-2386</td>
<td>Math 118</td>
<td>MTW: 1- 2 pm. (via Zoom) and by appointment</td>
</tr>
</tbody>
</table>

Zoom Meeting Times for Faculty:

https://sfasu.zoom.us/j/95349783854?pwd=L0RFMmlia2UvdkdFWVBRUVJUQUthQT09

Meeting ID: 953 4978 3854
Passcode: 219118

E-mail Dr. Onchoke for any question with regard to the course.

Office Hours: MTW 1- 2 pm, By email and via zoom video conferencing. Zoom appointments are most convenient during these times. You can email professor to set up a Zoom meeting. An ID and password will be provided for any appointed meeting.

Lecture times: CHE 111-600 MTWR 8 - 9.45 am Via Zoom.

Times: There are no face-to-face meeting as this course is delivered fully via livestream and online via D2L. All due dates in the syllabus and D2L are based on CDT/CST (Texas) time zones. Late assignments or extensions will not be considered due to difference in time zones.
OnLine Support: http://d2l.sfasu.edu

COURSE DESCRIPTION:

Introductory Chemistry. Introduction to the principles and concepts of chemical thought. Co-requisite: CHE 111L. Prerequisite: eligibility for MTH 138. (Algebra). This course is intended for non-chemistry majors. Chemistry and science majors need to take CHE133/134.

This course is for 3 credits and typically meets for 150 minutes a week for fifteen weeks plus meets for a 2-hour final examination. Students have significant daily reading and homework assignments involving critical thinking and quantitative reasoning. Students are tested over the material via quizzes and several exams during the semester including a comprehensive final exam. These activities average at a minimum 6 hours of work each week to prepare outside of classroom hours.
TEXT AND MATERIALS:

Note: Any chemistry textbook can be used as a resource to supplement the PowerPoint slides.

Recommended textbooks

1. OpenStax chemistry 2e (Chemistry 2e – OpenStax): https://openstax.org/details/books/chemistry-2e. This is a free downloadable Textbook.

 or

 Note: Any chemistry textbook can be used as a resource to supplement the PowerPoint slides

4. Scientific calculator (non-graphing and non-programmable); for example, SHARP EL-501WBBK, CASIO 115, Texas Instrument 30 XIIS. No programming or graphing calculators are to be used in exams and/or quizzes.

Co-requisite: CHE 111L.

PREREQUISITES: Eligibility for MTH 138.

COURSE OBJECTIVES: The student should learn the basic concepts, laws and theories of the topics and apply them to chemistry problems. The student will develop an understanding of the interconnectedness of chemistry to the other sciences and will relate the concepts of chemistry to contemporary, historical, technological and societal issues.

COVID-19 Safety Guidelines

Masks (cloth face coverings) must be worn over the nose and mouth at all times in this class and appropriate physical distancing must be observed. Students not wearing a mask and/or not observing appropriate physical distancing will be asked to leave the class. All incidents of not wearing a mask and/or not observing appropriate physical distancing will be reported to the Office of Student Rights and Responsibilities. Students who are reported for multiple infractions of not wearing a mask and/or not observing appropriate physical distancing may be subject to disciplinary actions.

MENTAL HEALTH AND WELLNESS STATEMENT

SFASU values students’ mental health and the role it plays in academic and overall student success. SFA provides a variety of resources to support students’ mental health and wellness. Many of these resources are free, and all of them are confidential.

On-campus Resources:
SFASU Counseling Services
www.sfasu.edu/counselingservices
3rd Floor Rusk Building
936-468-2401

SFASU Human Services Counseling Clinic
www.sfasu.edu/humanservices/139.asp
Human Services Room 202
936-468-1041
Crisis Resources:
Burke 24-hour crisis line 1(800) 392-8343
Suicide Prevention Lifeline 1(800) 273-TALK (8255)
Crisis Text Line: Text HELLO to 741-741

CORE OBJECTIVES AND RESOURCES

General Education Core Curriculum Objectives: The Texas Higher Education Coordinating Board has identified six core learning objectives: Critical Thinking Skills, Communication Skills, Empirical and Quantitative Skills, Teamwork, Personal Responsibility, and Social Responsibility. SFA is committed to the improvement of its general education core curriculum by regular assessment of student performance on these six objectives. Although this chemistry course develops the first four core-learning objectives, it only submits assessment assignments to the University Core Assessment Committee every even Spring for the Teamwork general education core curriculum requirement. If this is an even spring semester, another, “shell” course has been created to collect student artifacts to meet this state requirement. You will see this course on your D2L list.

During the even spring semester, you will receive an assignment in the laboratory portion of the course that fulfills both the requirements of the lab and the needs of Stephen F. Austin State University’s Core Curriculum Assessment Plan with the Texas Higher Education Coordinating Board. When you complete this one assignment, you need to upload the assignment to both the Chemistry dropbox and the Teamwork dropbox. Please note that this only applies to the specific teamwork assignment given in the lab section of this course. All other assignments should be submitted according to regular class operations. If you have any questions, please see your instructor or contact the University Assessment Specialist at (936) 468-1267 or jstringfield@sfasu.edu.

Below is a description of each Core Objective, followed by a chart that shows the topics covered in this course with their corresponding core objectives.

Core Objective 1: Critical Thinking: to include creative thinking, innovation, inquiry and analysis, evaluation and synthesis of information.

Definition of CRITICAL THINKING: disciplined thinking that is clear, rational, open-minded, and informed by evidence.

Critical thinking involves the use of a group of interconnected skills. The skills needed can be broken down into six steps.

Six Steps of CRITICAL THINKING

1. Knowledge means a student must have basic knowledge about the subject.

2. Comprehension requires understanding of the subject. Students that comprehend the new knowledge are able to relate the new knowledge to what they already know. Comprehending goes beyond simply parroting material back.
3. **Application** requires both knowledge and comprehension. Students must be able to carry out a task or apply their knowledge and comprehension to an assigned task.

4. **Analysis** involves breaking the knowledge down into smaller parts so it become clear how the smaller parts are related to other ideas.

5. **Synthesis** involves the ability to put together the parts you analyzed with other information to create something original.

6. **Evaluation** occurs once we have understood and analyzed what is said or written and the reasons offered to support it. Then we can appraise this information in order to decide whether you can give or withhold belief, and whether or not to take a particular action.

Adapted from: http://www.mhhe.com/socsience/philosophy/reichenbach/m1_chap02studyguide.html (accessed May 23, 2013)

Core Objective 2: Communication Skills: to include effective development, interpretation and expression of ideas through written, oral, and visual communication.

COMMUNICATION SKILLS in the sciences

For an excellent resource in scientific communication from a highly reputable source see the information provided on the Nature website link shown below.

http://www.nature.com/scitable/topic/scientific-communication-14121566 (accessed May 31, 2013)

Three especially informative links within the link shown above are:

- Effective Communication
- Effective Writing
- Audience/Purpose

Core Object 3: Empirical and Quantitative Skills: to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.

EMPIRICAL AND QUANTITATIVE SKILLS

Chemists rely on observations to explain the nature of the substances they study. There are two types of observations exist: qualitative and quantitative. A **qualitative observation** is an observation made with the senses and is usually expressed using words instead of numbers. Qualitative observations about a person sick in the hospital might include that the person is breathing rapidly, has a high temperature, and is very thin.

A **quantitative observation** is an observation that requires a numerical measurement and describes something in terms of "how much". The quantitative observation that a person has a temperature of 103.6 °F is much more useful information than just knowing that the person has a fever. Quantitative observations are preferred by scientists. Often quantitative data is acquired in lab.

One or more measurement is always a part of any quantitative observation. A **measurement** determines the dimensions, capacity, quantity, or extent of something. The most common types of measurements made in chemical laboratories are those of mass, volume, length, temperature, pressure, and concentration. Measurements always consist of two parts: a **number**, which tells the amount of the quantity measured, and a **unit**, which tells the nature or kind of quantity measured. A measured number without a unit is meaningless.
Once quantitative data is obtained, chemists then mathematically manipulate and analyze data.

Adapted from saplinglearning.com; accessed May 31, 2013

Core Objective 4: Teamwork: to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal.

Definition of TEAMWORK: work done by several associates with each doing a part but all subordinating personal prominence to the efficiency of the whole.

TEAMWORK General Rules

Each team member needs:

- all ideas evaluated critically;
- treat others in the group with respect
- everyone needs to pull their weight, meet deadlines, and contribute equally;
- actions need to be followed through;
- reporting needs to be accurate and comprehensive;
- problems with under-performing team members need to be discussed openly and resolved quickly; and
- peer assessment should be given fairly

Summary:

Core Objective 1: Critical Thinking Skills	To include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information.
Core Objective 2: Communication Skills	To include effective development, interpretation and expression of ideas though written, oral, and visual communication.
Core Objective 3: Empirical and Quantitative Skills	To include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.
Core Objective 4: Teamwork	To include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal. This Core Objective is Strongly Emphasized in Lab.

Student Learning Outcomes: Upon completion of this course, the students are expected to

- apply chemistry concepts using critical thinking skills and the scientific method to analyze and evaluate information to reach conclusions within problem sets and lab experiments. (COs 1 & 3)
- use communication skills to demonstrate their interpretation and analysis of scientific data. (CO 2)
- apply logic, quantitative reasoning, and pattern recognition to analyze and evaluate numerical data/observable facts to reach conclusions within problem sets and lab experiments. (COs 1 & 3)
- demonstrate the ability to cooperate within groups to gather results of an experiment, analyze data, and draw conclusions using communication skills. (COs 2 & 4)
<table>
<thead>
<tr>
<th>Chp</th>
<th>Topic</th>
<th>Core Objective</th>
<th>Specifics…</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Definition of Chemistry Scientific Method/Processes</td>
<td>Core Objective 1: Critical Thinking Skills</td>
<td>Analyzing and Interpreting data from a scientific investigation. Inquire about the natural world.</td>
</tr>
<tr>
<td>2</td>
<td>Measurement</td>
<td>Core Objective 3: Empirical and Quantitative Skills</td>
<td>In problem solving, learn to apply significant figures and apply the terms accuracy and precision to measurements.</td>
</tr>
<tr>
<td>3</td>
<td>Atoms and Periodic Table; Classifying Matter; Physical and Chemical Properties and Changes; Energy</td>
<td>Core Objective 2: Communication Skills Core Objective 4: Teamwork</td>
<td>Identify and justify as a class classification of matter and types of changes.</td>
</tr>
<tr>
<td>4</td>
<td>Parts of the Atom (subatomic particles); Ions and Isotopes</td>
<td>Core Objective 1: Critical Thinking Skills</td>
<td>Analyze composition of ions after gaining or losing electrons. Calculating atomic mass.</td>
</tr>
<tr>
<td>5</td>
<td>Writing and Naming Chemical Compounds</td>
<td>Core Objective 1: Critical Thinking Skills Core Objective 2: Communication Skills Core Objective 4: Teamwork</td>
<td>Analyze and communicate with class both molecular vs. ionic compounds; construct proper formulas and discuss and justify names of compounds.</td>
</tr>
<tr>
<td>6</td>
<td>Chemical Composition: Introducing the Mole and its Relationship with Grams.</td>
<td>Core Objective 3: Empirical and Quantitative Skills</td>
<td>Convert between particles, grams, and moles; calculate mass percent and empirical formulas.</td>
</tr>
<tr>
<td>7</td>
<td>Types of Reactions</td>
<td>All Core Objectives</td>
<td>Identify type of reaction; analyze reactants and determine products; balance reactions</td>
</tr>
<tr>
<td>8</td>
<td>Stoichiometry and Enthalpy Problems</td>
<td>Core Objective 3: Empirical and Quantitative Skills</td>
<td>Given an amount of a reactant or product, be able to calculate the amount of all other compounds/molecules in the reaction. Determine limiting reactant and % yield. Calculate heat given off or absorbed given an amount of reactant.</td>
</tr>
<tr>
<td>9</td>
<td>Electromagnetic Spectrum; Emission Spectra; Models that Explain Light Emission and Atomic Structure.</td>
<td>Core Objective 2: Communication Skills</td>
<td>Use visual communication to illustrate electron placement in electron configurations</td>
</tr>
<tr>
<td>Chapter</td>
<td>Topic</td>
<td>Core Objectives</td>
<td>Additional Information</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>10</td>
<td>Periodic Trends and molecular orbital diagrams. Analyze stability of an atom. Identify trends across and down a periodic table.</td>
<td>Core Objective 1: Critical Thinking Skills; Core Objective 3: Empirical and Quantitative Skills</td>
<td>Analyze and construct a 3-D model of a molecule given valence electrons. Determine the overall polarity of molecules by evaluating polar bonds within the molecule.</td>
</tr>
<tr>
<td>11</td>
<td>Gas Behavior Given Various Conditions and Changes.</td>
<td>Core Objective 1: Critical Thinking Skills; Core Objective 2: Communication Skills; Core Objective 3: Empirical and Quantitative Skills</td>
<td>Communicate the effect on a gas when either volume, pressure, or temperature of a gas is changed. Calculate exact values of these changes using the gas laws.</td>
</tr>
<tr>
<td>12</td>
<td>Intermolecular Forces</td>
<td>Core Objectives 1-3</td>
<td>Communicate how intermolecular forces determine state of matter, volatility, and viscosity. Perform enthalpy calculations for vaporization and fusion.</td>
</tr>
<tr>
<td>13</td>
<td>Solution Concentration, Types of Solutions, Titrations, and Colligative Properties</td>
<td>All Core Objectives</td>
<td>Solve for Concentration in a solution or for a titration; Analyze how solute particles affect vapor pressure, melting point, boiling point, and osmotic pressure. Discuss the effect of hyper-, hypo- and isosmotic solutions on cells.</td>
</tr>
<tr>
<td>14</td>
<td>Acid and Base Definitions and Properties</td>
<td>Core Objective 1: Critical Thinking Skills; Core Objective 3: Empirical and Quantitative Skills</td>
<td>Identify acid and base properties. Analyze an acid’s and base’s conjugate pair. Calculate pH, pOH, [H₃O⁺] and [OH⁻]</td>
</tr>
<tr>
<td>15</td>
<td>Equilibrium</td>
<td>Core Objective 1: Critical Thinking Skills; Core Objective 3: Empirical and Quantitative Skills</td>
<td>Kₑq calculations and Le Chatelier’s Principle</td>
</tr>
<tr>
<td>17</td>
<td>Nuclear Chemistry</td>
<td>Core Objective 2: Communication Skills</td>
<td>Types of radioactive decay; Fission vs. fusion</td>
</tr>
</tbody>
</table>

General Education Core Curriculum
This course has been selected to be part of Stephen F. Austin State University’s core curriculum. The Texas Higher Education Coordinating Board has identified six objectives for all core courses: Critical

COURSE CALENDER (APPROXIMATE TIME):

Chapters from the text will be covered in the following order. Exam schedule is tentative.

1. The chemical World, Methods and Measurements, Chapters 1 and 2 (5-15%).
2. Matter and Energy, Chapter 3 (5-15%).
3. Atoms and Elements, Ions, and the Periodic Table Chapter 4 (5-15%)
 Exam 1, Thursday, May 27.
4. Electrons in Atoms and the Periodic Table (chapter 9)
5. Compounds and Their Bonds: (Structure and Properties of Ionic and Covalent Compounds) Chapt. 5 (5-15%).
6. Inorganic and Organic compounds, Names and Formulas Chapter 5 & 6 (5-15%)
7. Structures of solids and Liquids, Chemical Bonding (Chapter 10)
8. Chemical Quantities and Reactions Chapt. 7- 8 (5-15%)
9. Oxidation and reduction (Chapter 16)
10. Chemical Equilibrium Chapt. 15 (5-15%)
11. Gases, Chapt. 11 (5-15%)
12. Solutions, Chapter 13 (5-15%)
 Exam III, Thursday, June 10
13. Acids and Bases, Chapter 14 (5-15%)
14. Nuclear Radiation, The Nucleus, Radioactivity, and Nuclear Medicine, Chapter 17 (5-15%)
 Exam IV, Monday, June 21.

Comprehensive makeup: Wednesday; June 23, 8:00 pm - 9:45 pm (in D2L)
Comprehensive Final Exam: June 25, 1305-600; Friday June 25, 2021 (8.00 a.m. -10.00 am in D2L)

NOTE: All Online assignments will be done via the Moodle website onchokechemistry.com

COURSE CALENDER (APPROXIMATE TIME):
<table>
<thead>
<tr>
<th>3</th>
<th>Chapt. 8: Chemical Quantities in Reactions</th>
<th>5/31 – 6/4</th>
<th>6/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Chapt. 15: Chemical Equilibrium</td>
<td>5/31 – 6/4</td>
<td>6/4</td>
</tr>
<tr>
<td>4</td>
<td>Exam II</td>
<td>June 3 (10.00 am- 12.00 p.m.)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Chapt. 11: Gases</td>
<td>6/7- 6/11 (3 lectures)</td>
<td>6/11</td>
</tr>
<tr>
<td>4</td>
<td>Chapt. 13: Solutions</td>
<td>6/7- 6/11</td>
<td>6/18</td>
</tr>
<tr>
<td>4</td>
<td>Exam III</td>
<td>June 10 (10.00am- 12.00 p.m.)</td>
<td></td>
</tr>
<tr>
<td>5&6</td>
<td>Chapter 14: Acids and Bases</td>
<td>6/14 - 6/18 (6 lectures)</td>
<td>6/22</td>
</tr>
<tr>
<td>6</td>
<td>Chapter 17: Radioactivity</td>
<td>6/ 21-6/24 (3 lectures)</td>
<td>6/24</td>
</tr>
<tr>
<td>6</td>
<td>Exam IV</td>
<td>June 21 (8.00- 10 a.m.), Monday</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Comprehensive Make-up</td>
<td>June 23 (10 – 12 pm.)</td>
<td></td>
</tr>
</tbody>
</table>

Comprehensive Final Exam: **CHEM. 1305-300 (MTWR):** Friday, June 25, 8:00 a.m. – 10 a.m (Via D2L BrightSpace).

Final Exam:
- Your final exam will be a comprehensive, online exam.
- The exam consists of multiple-choice questions, and is graded online.
- More specific info about the final will be given during dead week.
- You need to study hard for the final.

All of your course grades will be posted on Brightspace by D2L throughout the semester. You may check your grade at anytime on myCourses (Desire2Learn; OnLine Support: http://d2l.sfasu.edu).

COURSE REQUIREMENTS: There will be four semester exams (100 pts each), and a comprehensive Final (200 points) cumulative with emphasis on the material covered since the last exam. **The regular exams will be given from 10 am - 12.00 p.m.** These exams will consist of problems that must be set up and solved, discussion questions, and/or multiple choice, true/false, math problems, fill-in-blanks or essay type questions. All Exams will be done via D2L. Students have one week from the day any graded item is returned to notify professor of a possible grading error or ask questions about the grade of an item. After one week no points will be returned. The professor has the prerogative of also re-grading the entire item. Multiple choice questions will have no partial credit. In addition, homework problems will be assigned. Continuous weekly quizzes will be given in class. These quizzes will test your understanding of material covered in class.

Grading Policy:

4-hour exams (100 pts per test) cumulative with emphasis on the material covered since last. These exams will be given on Thursdays on May 27, June 4, June 11, June 21, and June 23 (Comprehensive Make-up Exam). All Exams will be given via D2L (Exams 1, 2, 3, 4, comprehensive makeup, and Exam 5 (Final)).
Exams will total 100 points (100 pts per test). The Exams will be completed via Internet with due dates assigned. Any computer capable of connecting to the internet can access the homework system

Final Exam – comprehensive exam worth 200 pts. Final Exam will be given on Friday June 25.

Homework: Homework will total 100 points (#points correct*100/ total points available). Online homework will be assigned and due dates posted on OnchokeChemistry.com Website. The due dates will be announced in class, and in the schedule. Homework will not be graded after the due date without legitimate documentation (NO EXCEPTIONS).

Strategies for Succeeding in Chemistry 111:

1. Attend every lecture because the topics covered in this course build on each other.
2. Prior to class, read the chapter which will be covered in lecture.
3. Review your lecture notes after each class. Correct obvious errors and note topics which require further study or clarification.
4. Work on homework problems until you can solve them without any help or guidance.
5. Spend the necessary amount of time studying chemistry. The rule of thumb for succeeding in Chemistry is three hours of study for every hour of lecture. This means that you should plan to study Chemistry for a minimum of nine hours each week.
6. Don’t procrastinate. The concepts take time to sink in, and you may have to practice these exercises over a period of many days in order to master the necessary skills.
7. Form a study group. This is your first avenue for getting help. Be able to communicate with each other on short notice, not just before class.

METHOD OF EVALUATION:

The final grade will be based upon percentage of points obtained in the following:

<table>
<thead>
<tr>
<th>Exam / Homework</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
<td>100 pts</td>
</tr>
<tr>
<td>Exam 2</td>
<td>100 pts</td>
</tr>
<tr>
<td>Exam 3</td>
<td>100 pts</td>
</tr>
<tr>
<td>Exam 4</td>
<td>100 pts</td>
</tr>
<tr>
<td>Final exam</td>
<td>200 pts</td>
</tr>
<tr>
<td>Homeworks</td>
<td>100 pts</td>
</tr>
<tr>
<td>Total</td>
<td>700 pts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Points</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>630—700</td>
<td>90.0—100.0%</td>
</tr>
<tr>
<td>B</td>
<td>560—629.9</td>
<td>80.0—89.9%</td>
</tr>
<tr>
<td>C</td>
<td>490—559.99</td>
<td>70.0—79.9%</td>
</tr>
<tr>
<td>D</td>
<td>420—489.9</td>
<td>60.0—69.9%</td>
</tr>
<tr>
<td>F</td>
<td>< 420</td>
<td>0.0—59.9%</td>
</tr>
</tbody>
</table>

Four exams will be given during the scheduled afternoon time periods. No one coming in late may start an exam after the first person has left. Each exam will be worth 100 points. The final exam will be comprehensive and will be worth 200 points.

<table>
<thead>
<tr>
<th>Exam Schedule</th>
<th>Day/Date</th>
<th>Approximate Material Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam I</td>
<td>May 27 (Thursday.)</td>
<td>Chaps. 1-4</td>
</tr>
<tr>
<td>Exam II</td>
<td>June 3 (Thursday.)</td>
<td>Chaps. 5, 6, 7, 8, 9,10,15 & 16</td>
</tr>
<tr>
<td>Exam III</td>
<td>June 10 (Thursday.)</td>
<td>Ch.11, Ch.13, 15</td>
</tr>
<tr>
<td>Exam IV</td>
<td>Monday June 21</td>
<td>Ch.14, Ch.17</td>
</tr>
<tr>
<td>Final Exam</td>
<td>May 25 (8.00 am. - 10.00 a.m.)</td>
<td>Comprehensive</td>
</tr>
</tbody>
</table>

- The Exam schedule is Tentative, and may change. However, the professor will strive to adhere to schedule.
- Comprehensive make-up exam will be given on **Wednesday, June 23 (10 a.m. - 12.00 p.m.)**

Please note: In order for you to have enough time to complete exams, all exams (except for the final) will be given from 10.00 am -11.00 p.m. It is your responsibility to make any needed adjustments in your class/work/extracurricular schedule to accommodate for this. Please keep in mind that 1.5- 2 hours are allotted for the exams for a reason. You should expect exams that are thorough and challenging. Plan to stay for the entire two-hour period.
MAKE-UP POLICY: A comprehensive make-up exam will be given on **Wednesday, June 23 (10 a.m. - 12:00 p.m.)**. Everyone is allowed to take the make-up test. If one does well in the make-up test, the make-up test will replace any one of the lowest grades of **the first 4 exams**.

ATTENDANCE POLICY:
1. Attendance of class is mandatory. **Nine (9) or more absences will result in an "F" for the course.**
2. **Ten points will be added to the point total for anyone with zero absences.**
3. **Six points will be added to anyone with only one absence**
4. **Three points will be added to anyone with only two absences**
5. **(For purposes of the bonus attendance points there is NO distinction between excused and unexcused absences**

Definition of Academic Dishonesty

Academic dishonesty includes both cheating and plagiarism. Cheating includes but is not limited to (1) using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class; (2) the falsification or invention of any information, including citations, on an assigned exercise; and/or (3) helping or attempting to help another in an act of cheating or plagiarism. Plagiarism is presenting the words or ideas of another person as if they were your own. Examples of plagiarism are (1) submitting an assignment as if it were one's own work when, in fact, it is at least partly the work of another; (2) submitting a work that has been purchased or otherwise obtained from an Internet source or another source; and (3) incorporating the words or ideas of an author into one's paper without giving the author due credit.

Any student found cheating will be subject to the penalties as stated in the Student Code of Conduct handbook; including but not limited to a score of zero on exam or laboratory experiment, expulsion from the class or expulsion from the University.

Please read the complete policy at http://www.sfasu.edu/policies/academic_integrity.asp

SEMESTER WITHDRAWS: Last day to drop/withdraw from the course without obtaining WP or WF grade is **June 24.**

WITHHELD GRADES SEMESTER GRADES POLICY (A-54): Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average.

The circumstances precipitating the request must have occurred after the last day in which a student could withdraw from a course. Students requesting a WH must be passing the course with a minimum projected grade of C.

ACADEMIC DISABILITIES POLICY: Students with Disabilities – To obtain disability-related accommodations and/or auxiliary aids, students with disabilities must contact the Office of Disability Services, Human Services Building, Room 325, 468-3004/468-1004 (TDD) as early as possible in the semester. Once verified, DS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided.

CLASSROOM BEHAVIOR POLICY: To ensure a classroom environment conducive to learning, any forms of classroom disruptions will not be tolerated (examples but not limited to – talking, use of cell phones/beepers, sleeping, reading other material, eating/drinking). Students who violate these rules will be asked to leave. Repeat offenders will be subject to disciplinary action in accordance with University policies as described in the Code of Student Conduct.

Note: If you are taking this course in preparation for the TEKS (to become a teacher) you need to contact the Chair, Dr. Janusa.

CALCULATION OF YOUR FINAL GRADE

You can calculate your grade in any one of the two ways: (a) As a % of average, or (b) By summing all total points, as shown below;

(A) **% FINAL GRADE (This assumes 16 homeworks (each worth 100 points)**

\[
\text{Final Average} = \frac{\text{Total in 4 Exams (400 pts)} + \text{Final Exam (100 pts)}}{700} + 100 \frac{\text{Total pts from Homeworks}}{1600} \times 100 \%
\]

(B) **POINT TOTALS:**

\[
\text{Final Average} = \frac{\text{Total pts in 4 Exams}}{1600} + 100 \frac{\text{Total Homeworks}}{1600} + \text{Final Exam (200 pts)}
\]