Instructor:
- Danielle Johnson
 Department of Mathematics and Statistics
- Office: Math 349
- TEL: (936) 468-1521
- Email: drjohnson@sfasu.edu

Course Meeting time and place: Online through D2L at https://d2l.sfasu.edu

Office Hours: These hours have been set aside specifically to help students.
- Monday: 10:00 am – 10:30 am
- Tuesday: 2 pm – 4 pm
- Wednesday: 10:00 am - 10:30 am
- Thursday: 2 pm – 4 pm

Additional times are available by appointment. You may attend office hours in person in my office or via zoom.

Office hours ZOOM: [link](https://sfasu.zoom.us/my/drcarriere?pwd=M3VDZkpRMnRSUUFWRFBmRXgzUzkwdz09) or use the Meeting ID: 451 497 5134 and Passcode: 429842

Course Description: Elementary concepts of sets, numeration systems, number theory, and properties of the natural numbers, integers, rational, and real number systems with an emphasis on problem solving and critical thinking.

Current Text and Materials
The textbook for this course is:

Calculators: Calculators cannot be used in this course.

Course Requirements: Major course requirements are various homework assignments as determined by your instructor, homework from textbook, three midterm exams and a comprehensive final exam.

- **Final exam** (lasting 2 hours)
- **Three exams** (each lasting 1 hour 15 minutes) prior to final exam, dates listed below. Exams will be on paper and given by a proctor. (For details, see Exam Policy below)
- **Ability and resources needed to be able to upload written work to D2L.**
- **Reliable internet access**
- **Good computer**
- **D2L access.** You will be required to access SFA’s Learning management Software at https://d2l.sfasu.edu daily
- **Homework** from the textbook will be collected and graded. You will submit written work to the appropriate drop box in D2L for that homework set. Homework due dates are posted in D2L and in the calendar in the syllabus but are subject to change so check the D2L news feed on the homepage of our class in D2L and check your email frequently.
- **Additional assignments at the instructor’s discretion**
- **There is no extra credit.**
- **Initiative to seek help outside of class, with the professor or the AARC may be necessary in order to succeed in the course**
Attendance policy: Attendance and participation are expected. This course is taught with an emphasis on inquiry rather than lecture. You will be required to participate in discussion posts and other activities online as part of your grade.

Grading and Exams
There will be three 75 minute exams during the semester and a 2 hr. comprehensive final exam. Your course grade will be determined as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Date</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>Written homework problems submitted online, discussion posts, d2L quizzes, Other graded D2l assignments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam I</td>
<td>Sept. 15-16</td>
<td>20%</td>
</tr>
<tr>
<td>Exam II</td>
<td>Oct. 13-14</td>
<td>20%</td>
</tr>
<tr>
<td>Exam III</td>
<td>Nov. 17-18</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Dec. 7-8</td>
<td>20%</td>
</tr>
</tbody>
</table>

Semester numerical scores will be converted into letter grades according to the following method.

<table>
<thead>
<tr>
<th>Range of numerical values</th>
<th>Corresponding Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>A</td>
</tr>
<tr>
<td>80-89</td>
<td>B</td>
</tr>
<tr>
<td>70-79</td>
<td>C</td>
</tr>
<tr>
<td>60-69</td>
<td>D</td>
</tr>
<tr>
<td>0-59</td>
<td>F</td>
</tr>
</tbody>
</table>

When I calculate your final grade at the end of the course, I will calculate a score on a 0-100 point scale using the scores that you have obtained during the course, and the grade breakdown given above. Your course grade will then be obtained using this table.

Resurrection Policy. If you score better on the final exam than your lowest midterm exam, we will replace your midterm grade with your final exam grade. The resurrection policy only applies to exams.

Exam Policy
Exams in this course must be proctored. You may take exams at the SFA campus with a proctor (time and location are given in Tentative course timeline in the Getting Started module). Realize that you will only be given 75 minutes to take the exam.) or you may elect to take exams with an approved proctor at another location. If you choose to take exams at another location, it is YOUR responsibility to secure a proctor and submit contact information to the instructor. Please see the “Exam Proctoring Instructions” document provided on D2L for more information.

Exams must be taken within the range of dates listed above. Exams may be taken at other locations (other than SFA) anytime during the given date range.
There should be no reason to miss an exam other than:

1. A medical excuse. Please provide proper documentation according to university rules.
2. A University sponsored event such as an athletic tournament, a play, or a musical performance. Your coach or director must contact us in advance. Athletic practices and rehearsals do not fall into this category.
3. A religious holiday. Please send a short email explaining the situation.
4. Extreme hardship such as a family emergency. Please have the proper university office notify us.

The above are the only allowable excuses for taking the exam before the scheduled time. Under no circumstances do we give late exams. Since we can only accommodate a limited number of students taking the exam at an earlier time, please make sure that you fall into one of the above categories before you contact us. If you miss an exam due to illness or a family emergency, you will not be penalized. The missed exam will be replaced with the final exam grade. If you have a conflict with the final exam (other than another exam at the same time), you must contact the Registrar. Only the Registrar can schedule an out-of-sequence final exam. The final exam grade can only replace one other exam grade. The final exam is mandatory.

The Class Environment: The format for this course will probably be different from your previous math classes. Students spend time working, discussing, and explaining problems. You should not expect that the instructor will lecture, or that you will have a clearly defined set of notes or PowerPoint-type slides. Getting used to this format requires some time, so be patient. I will send emails to the entire class during the course. Check your D2L email daily.

- The university’s Attendance and Excused Absences Policy can be found at http://www.sfasu.edu/policies/class_attendance_excused_abs.asp

Making Your Homework Easy to Read and Easy to Grade

- Make sure your handwriting is legible.
- In the upper right-hand corner you should write (in this order)
 - Your name
 - The homework set number
- Problems should be clearly labeled and numbered on the left side of the page. There should also be a visible separation between problems.
- To ensure that each problem is graded, problems and solutions should be written in the order that they are assigned.
- It is good practice to first work out the solutions to homework problems on scratch paper, and then to neatly write up your solutions. This will help you turn in a clean finished product.
- You should write up your solutions by yourself. You should always acknowledge any help received at the top of the assignment or in the right-hand margin.
- Individual and group help is available at the Academic Assistance and Resource Center, which is located on the first floor of the Steen Library.
- Take advantage of office hours.

The following is an excerpt from SFA Policy 5.4:

The federal definition of a credit hour is an amount of work represented in intended learning outcomes and verified by evidence of student achievement that is an institutionally established equivalency that reasonably approximates:

1. Not less than one hour of classroom or direct faculty instruction and a minimum of two hours out-of-class student work each week for approximately fifteen weeks for one semester or trimester hour of credit, or 10 to 12 weeks for one quarter hour of credit, or the equivalent amount of work over a different amount of time, or;
2. At least an equivalent amount of work as outlined in item 1 above for other academic activities as established by the institution including laboratory work, internships, practica, studio work, and other academic work leading to the award of credit hours.

To this end, all students in courses offered by the Department of Mathematics and Statistics that wish to be successful should plan to spend a minimum of two hours outside of class for every credit hour associated with this course. Expected
activities to be completed in the time outside of class include reviewing notes from previous class meetings, reading assigned course resources, completing all assigned exercises and projects, and performing periodic assessment preparation.

See http://www3.sfasu.edu/math/docs/syllabi/MATH1350Syllabus.pdf for elements common to all sections.

MENTAL HEALTH: SFASU values students’ mental health and the role it plays in academic and overall student success. SFA provides a variety of resources to support students mental health and wellness. Many of these resources are free, and all of them are confidential.

On-campus Resources:
SFASU Counseling Services
www.sfasu.edu/counselingservices
3rd Floor Rusk Building
936-468-2401

SFASU Human Services Counseling Clinic
www.sfasu.edu/humanservices/139.asp
Human Services Room 202
936-468-1041

Crisis Resources:
Burke 24-hour crisis line 1(800) 392-8343
Suicide Prevention Lifeline 1(800) 273-TALK (8255)
Crisis Text Line: Text HELLO to 741-741

Tentative Course Timeline: FALL 2021

<table>
<thead>
<tr>
<th>Due Sunday, Aug. 29th 11:59 PM</th>
<th>Getting Started Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>o All remaining items on Checklist</td>
<td></td>
</tr>
<tr>
<td>o Complete Course Structure Quiz with 100% score to move on to Introduction module</td>
<td></td>
</tr>
<tr>
<td>o Exam plans</td>
<td></td>
</tr>
</tbody>
</table>

Introduction Module

All remaining items on [Checklist](#)

Problem Solving Module

o Read textbook section 2.1
o All remaining items on [Checklist](#)
 * Discussions Due: Student Intro, Saving Ally, House Paint problem
<table>
<thead>
<tr>
<th>Due Sunday, Aug. 29th 11:59 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbers and the Base-10 System Module</td>
</tr>
<tr>
<td>o Read textbook sections:</td>
</tr>
<tr>
<td>▪ 1.1. The Counting Numbers</td>
</tr>
<tr>
<td>▪ 1.2 Decimals</td>
</tr>
<tr>
<td>▪ 1.4 Reasoning about Rounding</td>
</tr>
<tr>
<td>o Class Activities:</td>
</tr>
<tr>
<td>▪ 1C</td>
</tr>
<tr>
<td>▪ 1F</td>
</tr>
<tr>
<td>▪ 1G</td>
</tr>
<tr>
<td>▪ 1J</td>
</tr>
<tr>
<td>▪ 1K #1,3,4</td>
</tr>
<tr>
<td>▪ 1N</td>
</tr>
<tr>
<td>▪ 1O</td>
</tr>
<tr>
<td>o Homework from textbook (turned in via D2L dropbox):</td>
</tr>
<tr>
<td>▪ Section 1.1: p. 12 #3 (practice only, not to be turned in)</td>
</tr>
<tr>
<td>▪ Section 1.2: p. 26 #8</td>
</tr>
<tr>
<td>▪ Section 1.4: pp. 37-38 #4 (practice only, not to be turned in)</td>
</tr>
<tr>
<td>o All remaining items on Checklist</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Due Sunday, Sept. 5th 11:59 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractions Module, Part 1</td>
</tr>
<tr>
<td>o Read textbook sections</td>
</tr>
<tr>
<td>▪ 2.2 Defining and Reasoning about Fractions</td>
</tr>
<tr>
<td>o Class Activities:</td>
</tr>
<tr>
<td>▪ 2A</td>
</tr>
<tr>
<td>▪ 2C</td>
</tr>
<tr>
<td>▪ 2D</td>
</tr>
<tr>
<td>▪ 2F</td>
</tr>
<tr>
<td>o Homework from textbook (turned in via D2L dropbox):</td>
</tr>
<tr>
<td>▪ Section 2.2: p. 57 #5</td>
</tr>
<tr>
<td>o All remaining items on Checklist</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Due Sunday, Sept. 12th 11:59 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractions Module, Part 2</td>
</tr>
<tr>
<td>o Read textbook sections</td>
</tr>
<tr>
<td>▪ 2.3 Reasoning about Equivalent Fractions</td>
</tr>
<tr>
<td>▪ 2.4 Reasoning to Comparing Fractions</td>
</tr>
<tr>
<td>o Class Activities:</td>
</tr>
<tr>
<td>▪ 2I</td>
</tr>
<tr>
<td>▪ 2K</td>
</tr>
<tr>
<td>▪ 2L</td>
</tr>
<tr>
<td>▪ 2M #1</td>
</tr>
<tr>
<td>▪ 2O</td>
</tr>
<tr>
<td>▪ 2P</td>
</tr>
<tr>
<td>▪ 2Q</td>
</tr>
<tr>
<td>o Homework from textbook (turned in via D2L dropbox):</td>
</tr>
<tr>
<td>▪ Section 2.3: pp. 68 #15</td>
</tr>
<tr>
<td>▪ Section 2.4: p. 77 #12 (practice only, not to be turned in)</td>
</tr>
<tr>
<td>o All remaining items on Checklist</td>
</tr>
<tr>
<td>• Discussions Due: Unit Fraction problem, Ken problem</td>
</tr>
</tbody>
</table>

- **Discussions Due:** Unit Fraction problem, Ken problem
<table>
<thead>
<tr>
<th>Sept. 15th-16th</th>
<th>EXAM 1, covers Problem Solving Module, Numbers and Base 10 System Module, and Fraction Modules 1 and 2 (Chapters 1 and 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Must be completed Sept. 15th-16th</td>
</tr>
<tr>
<td></td>
<td>• On campus opportunity: Wednesday, Sept. 15th, 5-6:30 pm, Math Building Room 210</td>
</tr>
<tr>
<td></td>
<td>• If you choose to take the exam with an approved proctor off campus, you must schedule your exam with the proctor to be taken either Sept. 15th or Sept. 16th.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Due Sunday, Sept. 26th 11:59 PM</th>
<th>Addition and Subtraction Module, Part 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Read textbook sections</td>
</tr>
<tr>
<td></td>
<td>• 3.1 Interpretations of Addition and Subtraction</td>
</tr>
<tr>
<td></td>
<td>• 3.2 The Commutative and Associative Properties of Addition, Mental Math, and Single-Digit Facts</td>
</tr>
<tr>
<td></td>
<td>• Class Activities:</td>
</tr>
<tr>
<td></td>
<td>• 3D</td>
</tr>
<tr>
<td></td>
<td>• 3E</td>
</tr>
<tr>
<td></td>
<td>• 3F</td>
</tr>
<tr>
<td></td>
<td>• 3G</td>
</tr>
<tr>
<td></td>
<td>• Homework from textbook (turned in via D2L dropbox):</td>
</tr>
<tr>
<td></td>
<td>• Section 3.1: p. 101: #3</td>
</tr>
<tr>
<td></td>
<td>• Section 3.2: p. 112 #3</td>
</tr>
<tr>
<td></td>
<td>• All remaining items on Checklist</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Due Sunday, Oct. 3rd 11:59 PM</th>
<th>Addition and Subtraction Module, Part 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Read textbook sections</td>
</tr>
<tr>
<td></td>
<td>• 3.3 Why the Standard Algorithms for Addition and Subtraction in Base Ten Work,</td>
</tr>
<tr>
<td></td>
<td>• 3.4 Reasoning About Fraction Addition and Subtraction</td>
</tr>
<tr>
<td></td>
<td>• Class Activities:</td>
</tr>
<tr>
<td></td>
<td>• 3I</td>
</tr>
<tr>
<td></td>
<td>• 3J</td>
</tr>
<tr>
<td></td>
<td>• 3K</td>
</tr>
<tr>
<td></td>
<td>• 3O</td>
</tr>
<tr>
<td></td>
<td>• 3P</td>
</tr>
<tr>
<td></td>
<td>• 3Q</td>
</tr>
<tr>
<td></td>
<td>• 3R</td>
</tr>
<tr>
<td></td>
<td>• Homework from textbook (turned in via D2L dropbox):</td>
</tr>
<tr>
<td></td>
<td>• Section 3.3: pg. 120: #3 (revised instructions - SEE news feed on D2L)</td>
</tr>
<tr>
<td></td>
<td>• Section 3.4: pg. 132: #12</td>
</tr>
<tr>
<td></td>
<td>• All remaining items on Checklist</td>
</tr>
<tr>
<td></td>
<td>• Discussions Due: Tomaslav problem, Denise problem</td>
</tr>
</tbody>
</table>
Multiplication Module, Part 1

- **Due Sunday, Oct. 3rd 11:59 PM**
 - Read textbook sections
 - 4.1 Interpretations of Multiplication
 - 4.2 Why Multiplying by 10 is Special in Base Ten
 - Class Activities:
 - 4A
 - 4B
 - 4C
 - Homework from textbook (turned in via D2L dropbox):
 - Section 4.1: p. 149: #5ab
 - All remaining items on checklist

Multiplication Module, Part 2

- **Due Sunday, Oct. 10th 11:59 PM**
 - Read textbook sections
 - 4.3 The Commutative and Associative Properties of Multiplication, Areas of Rectangles and Volumes of Boxes
 - 4.4 The Distributive Property
 - 4.5 Properties of Arithmetic, Mental Math, and Single-Digit Multiplication Facts 4.6
 - Class Activities:
 - 4D
 - 4E
 - 4G
 - 4H
 - 4J
 - 4K #1,2,4
 - 4M #1,2,6
 - Homework from textbook (turned in via D2L dropbox):
 - Section 4.3: p. 163 #10
 - Section 4.4: p. 174: #4 (for practice, not turned in for a grade)
 - Section 4.5: p. 183: #4
 - All remaining items on Checklist
 - Discussions Due: Ted problem

EXAM 2, covers (Chapters 3 and 4, except section 4.6)

- Must be completed Oct. 13th-14th
- On campus opportunity: Wednesday, Oct. 13th, 5-6:30 pm, Math Building Room 210
- If you choose to take the exam with an approved proctor off campus, you must schedule your exam with the proctor to be taken either Oct. 13th or Oct. 14th.
<table>
<thead>
<tr>
<th>Due Date</th>
<th>Module</th>
<th>Activities</th>
</tr>
</thead>
</table>
| Oct. 24th, 11:59 PM | **Multiplication Module, Part 3** | o Read textbook sections
 ▪ 4.6 Why the Standard Algorithm for Multiplying Whole Numbers Works

 Class Activities:
 ▪ 4N
 o Homework from textbook (turned in via [D2L dropbox](#)):
 ▪ Section 4.6: pg.192: #10 (parts A, B, and D), #11 (parts A, B, and C)
 o All remaining items on [Checklist](#) |
| Oct. 31st, 11:59 PM | **Fraction Multiplication Module** | o Read textbook sections
 ▪ 5.1 Making Sense of Fraction Multiplication
 o Class Activities:
 ▪ 5A
 ▪ 5C
 ▪ 5D
 ▪ 5E
 o Homework from textbook (turned in via [D2L dropbox](#)):
 ▪ Section 5.1: pp. 203-205: #3
 o All remaining items on [Checklist](#) |
| Oct. 31st, 11:59 PM | **Decimal Multiplication Module** | o Read textbook section
 ▪ 5.2 Making Sense of Decimal Multiplication
 o Class Activities:
 ▪ 5G
 ▪ 5H
 o Homework from textbook (turned in via [D2L dropbox](#)):
 ▪ Section 5.2: pp. 209 #3
 ▪ Section 5.2: pg. 210: #10 (practice only, not to be turned in)
 o All remaining items on [Checklist](#) |
Division Module, Part 1

- Read textbook sections:
 - 6.1 Interpretations of Division
 - 6.2 Division and Fractions and Division with Remainder
- Class Activities:
 - 6A
 - 6B
 - 6C
 - 6D
 - 6G
- Homework from textbook (turned in via D2L dropbox):
 - Section 6.1: pp. 230-231: #1
 - Section 6.2: pp. 237: #4 (practice only, not to be turned in)
- All remaining items on Checklist
 - Discussions Due: Improper fraction discussion, Choosing correct answer form discussion (#7 pg 238)

Due Sunday, Nov. 7th 11:59 PM

Division Module, Part 2

- Read textbook sections:
 - 6.3 Why Division Algorithms Work
 - 6.6 Dividing Decimals
- Class Activities:
 - 6J
 - 6I
 - 6K
 - 6L
 - 6R
 - 6S
- Homework from textbook (turned in via D2L dropbox):
 - Section 6.3: pp. 250-253: #2, 3
 - Section 6.6: pp. 277: #3 (for practice only- do not turn in for a grade)
- All remaining items on Checklist

Due Sunday, Nov. 14th 11:59 PM

EXAM 3, covers (Sections 4.3, 4.4, 4.5, 4.6, 5.1, 5.2, 6.1, 6.2, and 6.3)

- Must be completed Nov. 17th - 18th
- On campus opportunity: Wednesday, Nov. 17th, 5-6:30 pm, Math Building Room 210
- If you choose to take the exam with an approved proctor off campus, you must schedule your exam with the proctor to be taken either Nov. 17th or Nov. 18th

Nov. 17th - 18th
Number Theory Module

- Read textbook sections:
 - 8.1 Factors and Multiples
 - 8.2 Even and Odd
 - 8.3 Divisibility Tests
 - 8.4 Prime Numbers

- Class Activities:
 - 8A
 - 8B
 - 8D
 - 8E
 - 8G
 - 8H

Homework from textbook (turned in via D2L dropbox):

- Section 8.1: pp. 341: #4 (for practice, not turned in for a grade)
- Section 8.2: pp. 344: #5 (for practice, not turned in for a grade)
- Section 8.4: pp. 356: #3 (for practice, not turned in for a grade)
- All remaining items on Checklist

Final Exam, comprehensive (including Chapter 8)

- Must be completed Dec. 8th - 9th
- On campus opportunity: Wednesday, Dec. 8th, 5-6:30 pm, Math Building Room 210
- If you choose to take the exam with an approved proctor off campus, you must schedule your exam with the proctor to be taken either Dec. 8th or Dec. 9th.
Math 1350 – Introduction to Foundation of Mathematics I
Course Syllabus

Course description: Properties of the natural numbers, integers, rational and real number systems, and number theory with an emphasis on problem-solving and critical thinking.

Core Objectives (CO):
1. Critical Thinking [CO 1]: to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information
2. Communication Skills [CO 2]: to include effective development, interpretation and expression of ideas through written, oral and visual communication
3. Empirical and Quantitative Skills [CO 3]: to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions

Credit hours: 3

The following is an excerpt from SFA Policy 5.4:
The federal definition of a credit hour is an amount of work represented in intended learning outcomes and verified by evidence of student achievement that is an institutionally established equivalency that reasonably approximates:

1. Not less than one hour of classroom or direct faculty instruction and a minimum of two hours out-of-class student work each week for approximately fifteen weeks for one semester or trimester hour of credit, or 10 to 12 weeks for one quarter hour of credit, or the equivalent amount of work over a different amount of time, or;

2. At least an equivalent amount of work as outlined in item 1 above for other academic activities as established by the institution including laboratory work, internships, practica, studio work, and other academic work leading to the award of credit hours.

To this end, all students in courses offered by the Department of Mathematics and Statistics that wish to be successful should plan to spend a minimum of two hours outside of class for every credit hour associated with this course. Expected activities to be completed in the time outside of class include reviewing notes from previous class meetings, reading assigned course resources, completing all assigned exercises and projects, and performing periodic assessment preparation.

Course Prerequisites and Corequisites: See general course prerequisites.

General Education Core Curriculum: This course has been selected to be part of SFA’s core curriculum. The Texas Higher Education Coordinating Board has identified six objectives for all core courses: Critical Thinking Skills, Communication Skills, Empirical and Quantitative Skills, Teamwork, Personal Responsibility, and Social Responsibility. SFA is committed to the improvement of its general education core curriculum by regular assessment of student performance on these six objectives. Assessment of these objectives at SFA will be based on student work from all core curriculum courses. This student work will be collected in D2L, the assessment management system selected by SFA to collect student work for core assessment.

By enrolling in MTH 1350 – Introduction to Mathematics for Elementary Teachers you are also enrolling in a Core Curriculum Course that fulfills the Mathematics Core Objective requirement.

The chart below indicates: (a) The core objectives that are required to be taught in this course per the Texas Higher Education Coordinating Board (THECB), (b) How the required core objectives will be addressed.

[Examples of the things that can be included in the final column are: Specific assignments, class module(s), chapter(s), strategies, activities, and/or techniques that address the core objectives.]
Core Curriculum Objective Table

<table>
<thead>
<tr>
<th>Core Objective</th>
<th>Definition</th>
<th>How the Core Objective Will be Addressed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Thinking Skills</td>
<td>To include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information.</td>
<td>Inquiry-based activities – Reasoning about Rounding, Fractions, etc.</td>
</tr>
<tr>
<td>Communication Skills</td>
<td>To include effective development, interpretation and expression of ideas though written, oral, and visual communication.</td>
<td>Explanation of concepts along with diagrams on activities</td>
</tr>
<tr>
<td>Empirical and Quantitative Skills</td>
<td>To include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.</td>
<td>Using and explaining algorithms to determine products and quotients.</td>
</tr>
</tbody>
</table>

Course outline:

- Techniques of problem solving and estimation skills [CO 1, 2, 3] 15%
 Explicit instruction in Critical Thinking, Communication and Empirical and Quantitative Reasoning is in addition to implicit instruction, modeling and practice that occur daily in the discussion of numbers and operations. This explicit instruction includes explanation of solving mathematical problems by thinking critically, communicating logically ordered solutions with complete and correct notation, and applying empirical or quantitative skills as appropriate to the problem. The following topics will be threaded throughout the course in order to develop the habits of mind necessary to be successful in mathematics:
 - Introduce Polya’s Problem Solving Process: Understand the Problem, Devise a Plan, Carry Out Plan, Look Back
 - Explore Basic Problem Solving Strategies
 - Explore Patterns in Language, Figures, Numbers, Sequences and Geometry
 - Develop Estimation Skills with Mental Arithmetic
 - Investigate temperature as a form of measurement

- Whole Numbers and Numeration: Concepts and Algorithms [CO 1, 2, 3] 25%
 - Define the Set of Whole Numbers
 - Model Whole Number Operations using a Variety of Methods
 - Verify Properties of Operations: Binary Operation; Closed, Commutative, Associative, Distributive Property of Multiplication over Addition, Identities, Multiplication by Zero; Division Algorithm
 - Explore Place Value Systems using Base Five Arithmetic
 - Develop and Apply Algorithms for Whole Number Operations
 - Develop Definition and Properties for Whole Number Exponents

- Number Theory: An Introduction [CO 1, 2, 3] 10%
 - Define and Explore Primes and Composites
 - Explore Basic Divisibility Properties of Sums and Products
 - Explore Applications of the Fundamental Theorem of Arithmetic
 - Define the GCD and LCM and Use Algorithms for Finding Each

- Integers: Concepts and Algorithms [CO 1, 2, 3] 25%
 - Model Integer Operations Using a Variety of Methods

sfasu.edu/math
Math 1350 – Introduction to Foundations of Mathematics I
Syllabus Continuation

- Investigate Extensions of Whole Number Operations and their Properties: Closed, Commutative, Associative, Distributive Property of Multiplication over Addition, Identities, Additive Inverse, Multiplication by Zero
- Real Numbers: Concepts and Algorithms [CO 1, 2, 3] 25%
 - Investigate Practical Uses for Fractions
 - Explore Connections between Fractions, Rational Numbers, Decimals, and Percents
 - Investigate Order of Numbers in Decimal Form
 - Illustrate the Pythagorean Theorem
 - Develop Proportional Thinking to Include Ratio and Proportion, Properties of Proportions, Fundamental Law of Fractions

Explicit instruction in Critical Thinking, Communication and Empirical and Quantitative Reasoning is in addition to implicit instruction, modeling and practice that occur daily in the discussion of numbers and operations. This explicit instruction includes explanation of solving mathematical problems by thinking critically, communicating logically ordered solutions with complete and correct notation, and applying empirical or quantitative skills as appropriate to the problem.

Academic Integrity
Academic integrity is a responsibility of all university faculty and students. Faculty members promote academic integrity in multiple ways including instruction on the components of academic honesty, as well as abiding by university policy on penalties for cheating and plagiarism.

The penalty for a student found cheating on any part of an assignment, quiz, or exam in this class will range from a grade of zero on the work to a grade of F in the course, and may result in additional, more severe disciplinary measures. A student who allows another to copy his work and the student copying the work are both guilty of cheating. Do your own work. Do not show your completed work to others. Do not allow others to copy your work.

Definition of Academic Dishonesty (SFA policy 4.1):
Academic dishonesty includes both cheating and plagiarism. Cheating includes, but is not limited to:
 - using or attempting to use unauthorized materials on any class assignment or exam;
 - falsifying or inventing of any information, including citations, on an assignment;
 - helping or attempting to help other student(s) in an act of cheating or plagiarism.
Plagiarism is presenting the words or ideas of another person as if they were one’s own. Examples of plagiarism include, but are not limited to:
 - submitting an assignment as one’s own work when it is at least partly the work of another person;
 - submitting a work that has been purchased or otherwise obtained from the Internet or another source;
 - incorporating the words or ideas of an author into one’s paper or presentation without giving the author credit.

Withheld Grades Semester Grades (SFA Policy 5.5)
Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average. The circumstances precipitating the request must have occurred after the last day in which a student could withdraw from a course. Students requesting a WH must be passing the course with a minimum projected grade of C.

Students with Disabilities
To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices.
SFASU Mental Health Statement: SFASU values students’ mental health and the role it plays in academic and overall student success. SFA provides a variety of resources to support students mental health and wellness. Many of these resources are free, and all of them are confidential.

On-campus Resources:
SFASU Counseling Services
www.sfasu.edu/counselingservices
3rd Floor Rusk Building
936-468-2401

SFASU Human Services Counseling Clinic
www.sfasu.edu/humanservices/139.asp
Human Services Room 202
936-468-1041

Crisis Resources:
Burke 24-hour crisis line 1(800) 392-8343
Suicide Prevention Lifeline 1(800) 273-TALK (8255)
Crisis Text Line: Text HELLO to 741-741

Acceptable Student Behavior
Classroom behavior should not interfere with the instructor’s ability to conduct the class or the ability of other students to learn from the instructional program (see the Student Conduct Code, policy 10.4). Unacceptable or disruptive behavior will not be tolerated. Students who disrupt the learning environment may be asked to leave class and may be subject to judicial, academic or other penalties. This prohibition applies to all instructional forums, including electronic, classroom, labs, discussion groups, field trips, etc. The instructor shall have full discretion over what behavior is appropriate/inappropriate in the classroom. Students who do not attend class regularly or who perform poorly on class projects/exams may be referred to the Early Alert Program. This program provides students with recommendations for resources or other assistance that is available to help SFA students succeed.

Student Learning Outcomes (SLO): At the end of MTH 127, a student who has studied and learned the material should be able to:
1. Solve a variety of problems using multiple problem-solving techniques. [CO 1,3]
2. Demonstrate understanding of core concepts underlying standard and non-standard algorithmic procedures for performing operations on subsets of real numbers. [CO 1,3]
3. Communicate his/her knowledge effectively in multiple formats – verbally, concretely, and in writing. [CO 2]
4. Define, identify, and use the fundamental properties of real number operations. [CO 3]
5. Provide logical justification of mathematical thinking. [CO 1]
6. Use mathematical language and notation appropriately to communicate ideas. [CO 2]

There are no specific program learning outcomes for this major addressed in this course. It is a general education core curriculum course and/or a service course.

Date of document: 08/09/2021