MATHEMATICS AND STATISTICS

Name: Angela Dixon
Email: al.dixon@sfasu.edu

Class meeting time and place: Online course (www.mymathlab.com), Aug 23-Dec 8

Office Hours: These hours have been set aside to help students. Additional times are available by appointment. Office hours are available through Zoom upon request.

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-11:30</td>
<td>10:45-11:45</td>
<td>10-11:30</td>
<td>10:45-11:45</td>
<td>None</td>
</tr>
</tbody>
</table>

Course description:
Topics include mathematical models; solving equations; creating, interpreting and graphing functions. Particular focus is given to polynomial, exponential and logarithmic functions.

Text and Materials:
The textbook is College Algebra, 12th edition by Lial, Hornsby, Schneider, Daniels. Chapters 1 thru 5 of the textbook will be covered in this course.

The entirety of this course will be completed through My Math Lab at www.mymathlab.com. When you create your account, use the following course ID: dixon18782

You will need a calculator for this class. A scientific calculator with log capabilities will be sufficient. A graphing calculator may be used, but is not required. The TI-30XS Multiview is a good calculator that is fairly cheap.

Course Requirements:
For each section of the textbook covered, you must complete a Lesson containing video instruction about the topic. Once you have mastered the lesson, you will then complete a homework assignment for each section of the textbook. To assess your knowledge of the material, there will be quizzes covering two or three sections each, three regular exams, and a comprehensive final exam. You are also expected to complete a course information quiz, and five discussions throughout the semester.

Exams 1, 2, and 3 will be September 23, October 14, and November 8 respectively and will require 75 minutes each. The final exam is December 8 and will require 120 minutes.

See the Frequently Asked Questions document for more information on course setup and assignments you are expected to complete. See the Schedule of Due Dates for the exact due date of each assignment throughout the semester.

Discussions, assignments, quizzes, and exams will not be accepted late. Attempt all work well ahead of the due dates so that any mathematical and/or technical problems can be cleared up ahead of time.
Grading Policy:
Your final grade will be determined as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
<th>Grade Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussions [CO 1,2,3]</td>
<td>5%</td>
<td>90% - 100%</td>
<td>A</td>
</tr>
<tr>
<td>MyMathLab Homework Average [CO 1,2,3]</td>
<td>15%</td>
<td>80% - 90%</td>
<td>B</td>
</tr>
<tr>
<td>MyMathLab Quiz Average [CO 1,2,3]</td>
<td>15%</td>
<td>70% - 80%</td>
<td>C</td>
</tr>
<tr>
<td>Exam 1 [CO 1,2,3]</td>
<td>15%</td>
<td>60% - 70%</td>
<td>D</td>
</tr>
<tr>
<td>Exam 2 [CO 1,2,3]</td>
<td>15%</td>
<td>0% - 60%</td>
<td>F</td>
</tr>
<tr>
<td>Exam 3 [CO 1,2,3]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Exam [CO 1,2,3]</td>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Course Grade</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attendance Policy:
As this is an online class, attendance is considered routinely logging in and completing assignments in a timely manner. *See the Schedule of Due Dates for specific due dates for the entire course*. Attendance will not be formally factored into your course grade, however, incomplete assignments will naturally decrease your semester grade.

The following is an excerpt from SFA Policy 5.4:

The federal definition of a credit hour is an amount of work represented in intended learning outcomes and verified by evidence of student achievement that is an institutionally established equivalency that reasonably approximates:

1. *Not less than one hour of classroom or direct faculty instruction and a minimum of two hours out-of-class student work each week for approximately fifteen weeks for one semester or trimester hour of credit, or 10 to 12 weeks for one quarter hour of credit, or the equivalent amount of work over a different amount of time, or;*

2. *At least an equivalent amount of work as outlined in item 1 above for other academic activities as established by the institution including laboratory work, internships, practica, studio work, and other academic work leading to the award of credit hours.*

To this end, all students in online courses offered by the Department of Mathematics and Statistics that wish to be successful should plan to spend a minimum of three hours for every credit hour associated with this course each week. Expected activities to be completed in the time include completing current lessons, reviewing previous lessons, reading assigned course resources, completing all assigned exercises, participating in discussions with other classmates, performing periodic assessment preparation, and completing online and face-to-face exams.

See http://www3.sfasu.edu/math/docs/syllabi/MATH1314Syllabus.pdf for elements common to all sections of College Algebra.
Course description: Topics include mathematical models; solving equations; creating, interpreting and graphing functions. Particular focus is given to polynomial, exponential and logarithmic functions.

Core Objectives (CO):
1. **Critical Thinking** [CO 1]: to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information
2. **Communication Skills** [CO 2]: to include effective development, interpretation and expression of ideas through written, oral and visual communication
3. **Empirical and Quantitative Skills** [CO 3]: to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions

Credit hours: 3

The following is an excerpt from SFA Policy 5.4:

The federal definition of a credit hour is an amount of work represented in intended learning outcomes and verified by evidence of student achievement that is an institutionally established equivalency that reasonably approximates:

1. Not less than one hour of classroom or direct faculty instruction and a minimum of two hours out-of-class student work each week for approximately fifteen weeks for one semester or trimester hour of credit, or 10 to 12 weeks for one quarter hour of credit, or the equivalent amount of work over a different amount of time, or;

2. At least an equivalent amount of work as outlined in item 1 above for other academic activities as established by the institution including laboratory work, internships, practica, studio work, and other academic work leading to the award of credit hours.

To this end, all students in courses offered by the Department of Mathematics and Statistics that wish to be successful should plan to spend a minimum of two hours outside of class for every credit hour associated with this course. Expected activities to be completed in the time outside of class include reviewing notes from previous class meetings, reading assigned course resources, completing all assigned exercises and projects, and performing periodic assessment preparation.

Course Prerequisites and Corequisites: See general course prerequisites.

General Education Core Curriculum: This course has been selected to be part of SFA’s core curriculum. The Texas Higher Education Coordinating Board has identified six objectives for all core courses: Critical Thinking Skills, Communication Skills, Empirical and Quantitative Skills, Teamwork, Personal Responsibility, and Social Responsibility. SFA is committed to the improvement of its general education core curriculum by regular assessment of student performance on these six objectives. Assessment of these objectives at SFA will be based on student work from all core curriculum courses. This student work will be collected in D2L, the assessment management system selected by SFA to collect student work for core assessment.

By enrolling in **MATH 1314 College Algebra** you are also enrolling in a Core Curriculum Course that fulfills the Mathematics Core Objective requirement.

The chart below indicates: (a) The core objectives that are required to be taught in this course per the Texas Higher Education Coordinating Board (THECB), (b) How the required core objectives will be addressed.
Core Curriculum Objective Table

<table>
<thead>
<tr>
<th>Core Objective</th>
<th>Definition</th>
<th>How the Core Objective Will be Addressed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Thinking Skills</td>
<td>To include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information.</td>
<td>In studying transformations of functions, students will evaluate graphs to determine the function rule.</td>
</tr>
<tr>
<td>Communication Skills</td>
<td>To include effective development, interpretation and expression of ideas though written, oral, and visual communication.</td>
<td>Students will communicate algebraic thinking by writing solutions in both interval and function notation.</td>
</tr>
<tr>
<td>Empirical and Quantitative Skills</td>
<td>To include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.</td>
<td>Students will be presented with information regarding exponential functions and will draw conclusions based on the information/data.</td>
</tr>
</tbody>
</table>

Course outline:

- Making Mathematical Models [CO 1, 2, 3] 5%
- Linear Equations, Functions and Models [CO 1, 2, 3] 20%
 - Review of Coordinate Geometry
 - Graphs of Equations
 - Lines and Linear Modeling
 - Systems of Equations
- Quadratic Equations, Functions and Models [CO 1, 2, 3] 20%
 - Graphs of Quadratic Equations
 - Techniques for Solving and Optimizing Quadratic Equations
 - Applications of Quadratic Functions
- Functions [CO 1, 2, 3] 20%
 - Graphs of Functions
 - Algebra of Functions
 - Inverses of Functions
 - Special Functions
 - Polynomial Functions
 - Division of Polynomials and Factorization
 - [Rational Functions]
- Exponential and Logarithmic Functions and Models [CO 1, 2, 3] 20%
 - Exponential Functions
 - Logarithmic Functions
 - Logarithmic Identities and Equations
 - Exponential Equations and Applications
 - Modeling with Exponential and Logarithmic Functions
- Solving Equations [CO 1, 2, 3] 10%
 - Field Properties: Associativity, Commutativity, Identity, Inverses, Distributivity
 - Review Rules for Exponents
Incorporating Exponents and Logarithms in the Order of Operations

- Explicit instruction in Critical Thinking, Communication and Empirical and Quantitative Reasoning is in addition to implicit instruction, modeling and practice that occur daily in the discussion of college algebra. This explicit instruction includes explanation of solving mathematical problems by thinking critically, communicating logically ordered solutions with complete and correct notation, and applying empirical or quantitative skills as appropriate to the problem.

5%

Academic Integrity

Academic integrity is a responsibility of all university faculty and students. Faculty members promote academic integrity in multiple ways including instruction on the components of academic honesty, as well as abiding by university policy on penalties for cheating and plagiarism.

The penalty for a student found cheating on any part of an assignment, quiz, or exam in this class will range from a grade of zero on the work to a grade of F in the course, and may result in additional, more severe disciplinary measures. A student who allows another to copy his work and the student copying the work are both guilty of cheating. Do your own work. Do not show your completed work to others. Do not allow others to copy your work.

Definition of Academic Dishonesty (SFA policy 4.1):

Academic dishonesty includes both cheating and plagiarism. Cheating includes, but is not limited to:

- using or attempting to use unauthorized materials on any class assignment or exam;
- falsifying or inventing of any information, including citations, on an assignment;
- helping or attempting to help other student(s) in an act of cheating or plagiarism.

Plagiarism is presenting the words or ideas of another person as if they were one’s own. Examples of plagiarism include, but are not limited to:

- submitting an assignment as one’s own work when it is at least partly the work of another person;
- submitting a work that has been purchased or otherwise obtained from the Internet or another source;
- incorporating the words or ideas of an author into one's paper or presentation without giving the author credit.

Withheld Grades Semester Grades (SFA Policy 5.5)

Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average. The circumstances precipitating the request must have occurred after the last day in which a student could withdraw from a course. Students requesting a WH must be passing the course with a minimum projected grade of C.

Students with Disabilities

To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices.

SFASU Mental Health Statement: SFASU values students’ mental health and the role it plays in academic and overall student success. SFA provides a variety of resources to support students mental health and wellness. Many of these resources are free, and all of them are confidential.
On-campus Resources:
SFASU Counseling Services
www.sfasu.edu/counselingservices
3rd Floor Rusk Building
936-468-2401

SFASU Human Services Counseling Clinic
www.sfasu.edu/humanservices/139.asp
Human Services Room 202
936-468-1041

Crisis Resources:
Burke 24-hour crisis line 1(800) 392-8343
Suicide Prevention Lifeline 1(800) 273-TALK (8255)
Crisis Text Line: Text HELLO to 741-741

Acceptable Student Behavior
Classroom behavior should not interfere with the instructor’s ability to conduct the class or the ability of other students to learn from the instructional program (see the Student Conduct Code, policy 10.4). Unacceptable or disruptive behavior will not be tolerated. Students who disrupt the learning environment may be asked to leave class and may be subject to judicial, academic or other penalties. This prohibition applies to all instructional forums, including electronic, classroom, labs, discussion groups, field trips, etc. The instructor shall have full discretion over what behavior is appropriate/inappropriate in the classroom. Students who do not attend class regularly or who perform poorly on class projects/exams may be referred to the Early Alert Program. This program provides students with recommendations for resources or other assistance that is available to help SFA students succeed.

Student Learning Outcomes (SLO): At the end of MTH 138, a student who has studied and learned the material should be able to:

1. Employ independence of thought and innovation in order to obtain solutions to typical algebraic problems. [CO 1]
2. Create, manipulate, analyze and solve algebraic equations and expressions, especially linear, quadratic, polynomial, rational, exponential and logarithmic expressions. [CO 1,3]
3. Connect graphical properties with those of associated functions or equations, and use these connections to communicate graphical or physical properties in algebraic language. [CO 2,3]
4. Read, interpret, and communicate written mathematics, both in prose and in its graphical or visual forms. [CO 2]
5. Use functions to model and solve real-world problems. [CO 1,3]

There are no specific program learning outcomes for this major addressed in this course. It is a general education core curriculum course and/or a service course.

Date of document: 08/09/2021