Course Syllabus
CHEM 105 (Introductory Chemistry)

Course Description: Introductory Laboratory – Introductory laboratory experiments

Number of Credit Hours: 1 semester hour

Course Prerequisites and Corequisites: Corequisite: CHE 1305

Program Learning Outcomes: There are no specific program learning outcomes for this major addressed in this course. This course is a general education core curriculum course.

General Education Core Curriculum Objectives: The Texas Higher Education Coordinating Board has identified six core learning objectives: Critical Thinking Skills, Communication Skills, Empirical and Quantitative Skills, Teamwork, Personal Responsibility, and Social Responsibility. SFA is committed to the improvement of its general education core curriculum by regular assessment of student performance on these six objectives. Chemistry core courses only develop the first four core-learning objectives: critical thinking, communication, empirical and quantitative, teamwork.

Course Objective: The student will develop an understanding of the basic concepts, laws and theories of chemistry and apply them to chemistry problems through a laboratory setting. The student should learn the skills needed to demonstrate competency in introductory chemistry laboratory techniques.

Student Learning Outcomes: Upon completion of this course, the students are expected to

- apply chemistry concepts using critical thinking skills and the scientific method to analyze and evaluate information to reach conclusions within problem sets and lab experiments. (COs 1 & 3)
- use communication skills to demonstrate their interpretation and analysis of scientific data and express their ideas and thoughts. (CO 2)
- apply logic, quantitative reasoning, and pattern recognition to analyze and evaluate numerical data/observable facts to reach conclusions within problem sets and lab experiments. (COs 1 & 3)
- demonstrate the ability to cooperate within groups to gather results of an experiment, analyze data, and draw conclusions using communication skills. (COs 2 & 4)

Outline of Topics (approximate course time):
Safety and Introduction to Chemistry Lab (9%)
Significant Figures (9%)
Endothermic, Exothermic, Heat of Reaction (9%)
Specific Heat, Heat of Combustion (9%)
Counting Atoms and Molecules (9%)
Gas Evolution, Precipitation (9%)
Atomic Emission Spectra (9%)
PhET lab: Lewis Dot Structures and VSEPR Theory (9%)
Creating a Solution of Known Molarity, Acid-base Standardization (10%)
Boyle, Charles, Avogadro’s Laws (9%)
Ideal Gas Law (9%)
Class Syllabus
Fall 2021
CHEM 1105
Introductory Chemistry

This course starts October 18th and runs to December 10th 2021

Name: Dr. Darrell R. Fry
Department: Chemistry & Biochemistry
Desire2Learn: http://d2l.sfasu.edu
Office: M-120

Student Hours: MWF 7:30-8:30; T 1-2; MW 10:30-11:30 and by appointment
Available in office or through Zoom
Zoom Link: https://sfasu.zoom.us/j/93909376629?pwd=cTQwWVIXa003VER2b0gzNEpVM1JnZz09

Meeting ID: 939 0937 6629
Passcode: 158547

Text and Materials:
Stephen F. Austin State University CHEM 1105 Online Lab Manual available in the bookstore.

Internet access to conduct virtual lab simulations using free software by following CHEM 1105 lab manual.

COURSE REQUIREMENTS:

Prelab quizzes (10 pts per lab) over the material for each lab. These quizzes will be due each Tuesday (see calendar below) by 11:59pm in D2L.

Postlab dropbox (10 pts per lab) of data and questions over the lab as indicated in lab manual. This information will be due each Friday (see calendar below) by 11:59pm in D2L.

Mid-term Exam – comprehensive exam over lab experiments 1 through 6 worth 50 pts. Mid-term exam will be available in D2L between Nov 8 to Nov 11 at 11:59pm. Exam must be completed within 2 hours of opening the exam between the open dates.

Final Exam – comprehensive exam over lab experiments 7 through 11 worth 50 pts. Final exam will be available in D2L between Nov 29 to Dec 3 at 11:59pm. Exam must be completed within 2 hours of opening the exam between the open dates.

Method of Evaluation: The final grade will be based upon percentage of points obtained in the following:

- Prelabs 110 pts
- Postlabs 110 pts (note: Lab 2 second quiz is postlab assignment)
- Mid-term 50 pts
- Final 50 pts
- Total 320 pts

Grading scale - A= 90 - 100%; B= 80 - 89%; C= 70 - 79%; D= 60 - 69%; F= below 60%
COURSE CALENDAR:

This lab course is for 1 credit and typically requires 250 minutes a week for 7 weeks. Students have weekly reading and videos to prepare for lab each week and lab reports involving critical thinking and quantitative reasoning. Students are tested over the material via quizzes and exams. Students are expected to prepare prior to each lab (literature and concepts), conduct experiments, and report results (lab reports). Students have required academic components and deliverables: written work (pre-lab assessments, quizzes, and lab reports). These activities, inclusive of the lab expectations and academic components, average a minimum of 8 hours of work each week.

Note: All prelab (quiz) and post lab (dropbox: data & questions) are due by 11:59pm of due date. Exams must be completed within 2 hrs of opening the exam between the open dates.

<table>
<thead>
<tr>
<th>Week start Date</th>
<th>Due Date</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 18</td>
<td>Oct 18 – Prelab 1 (quiz)</td>
<td>Lab 1: Safety and an Introduction to Chemistry lab … pg 2</td>
</tr>
<tr>
<td></td>
<td>Oct 22 – Postlab 1 (dropbox)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct 18 – Prelab 2 (quiz)</td>
<td>Lab 2: Significant Figures … pg 5</td>
</tr>
<tr>
<td></td>
<td>Oct 22 – Postlab 2 (quiz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: Postlab is quiz for Lab 2</td>
<td></td>
</tr>
<tr>
<td>Oct 25</td>
<td>Oct 26 – Prelab 3 (quiz)</td>
<td>Lab 3: VCL 3-1 (Endothermic vs Exothermic), 3-10 (Heat of Reaction NaOH + HCl) … pg 8</td>
</tr>
<tr>
<td></td>
<td>Oct 29 – Postlab 3 (dropbox)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct 26 – Prelab 4 (quiz)</td>
<td>Lab 4: VCL 3-3 (Specific Heat of Al) and 3-7 (Heat of Combustion) … pg 10</td>
</tr>
<tr>
<td></td>
<td>Oct 29 – Postlab 4 (dropbox)</td>
<td></td>
</tr>
<tr>
<td>Nov 8</td>
<td>Nov 2 – Prelab 5 (quiz)</td>
<td>Lab 5: VCL 2-7 (Counting Atoms) and 2-9 (Counting Molecules) … pg 13</td>
</tr>
<tr>
<td></td>
<td>Nov 5 – Postlab 5 (dropbox)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov 2 – Prelab 6 (quiz)</td>
<td>Lab 6: Hands-on Activities for SR and Gas Evolution Rxns; VCL 2-4 (Precipitation Rxn) … pg 15</td>
</tr>
<tr>
<td></td>
<td>Nov 5 – Postlab 6 (dropbox)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov 8 – mid-term opens</td>
<td>Mid-term Exam in D2L over labs 1-6</td>
</tr>
<tr>
<td></td>
<td>Nov 11 – mid-term closes</td>
<td></td>
</tr>
<tr>
<td>Nov 15</td>
<td>Nov 16 – Prelab 7 (quiz)</td>
<td>Lab 7: VCL 1-8 (Atomic Emission Spectra) … pg 18</td>
</tr>
<tr>
<td></td>
<td>Nov 19 – Postlab 7 dropbox)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov 16 – Prelab 8 (quiz)</td>
<td>Lab 8: PhET Lab (Lewis Dot Structures and VSEPR Theory) … pg 19</td>
</tr>
<tr>
<td></td>
<td>Nov 19 – Postlab 8 (dropbox)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov 16 – Prelab 9 (quiz)</td>
<td>Lab 9: VCL 2-13 (Creating a Solution of Known Molarity), 6-15 (Acid-base Standardization) … pg 21</td>
</tr>
<tr>
<td></td>
<td>Nov 19 – Postlab 9 (dropbox)</td>
<td></td>
</tr>
<tr>
<td>Nov 29</td>
<td>Nov 30 – Prelab 10 (quiz)</td>
<td>Lab 10: VCL 5-1 (Boyle’s Law, 5-2 (Charles’s Law), and 5-3 (Avogadro’s Law) … pg 23</td>
</tr>
<tr>
<td></td>
<td>Dec 3 – Postlab 10 (dropbox)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov 30 – Prelab 11 (quiz)</td>
<td>Lab 11: Hands-on Activity for Ideal Gas Law … pg 26</td>
</tr>
<tr>
<td></td>
<td>Dec 3 – Postlab 11 (dropbox)</td>
<td></td>
</tr>
<tr>
<td>Dec 6</td>
<td>Dec 6 – final opens</td>
<td>Final Exam in D2L over labs 7-11</td>
</tr>
<tr>
<td></td>
<td>Dec 10 – final closes</td>
<td></td>
</tr>
</tbody>
</table>
Attendance Policy:
This course is online meaning there are no required face-to-face meetings. The assignments and exams will be due during the assigned times unless other arrangements are approved by the instructor prior to the due date. There are no make-up activities for notifications given the day of the activity.

Academic Integrity (A-9.1):
Academic integrity is a responsibility of all university faculty and students. Faculty members promote academic integrity in multiple ways including instruction on the components of academic honesty, as well as abiding by university policy on penalties for cheating and plagiarism.

Definition of Academic Dishonesty
Academic dishonesty includes both cheating and plagiarism. Cheating includes but is not limited to (1) using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class; (2) the falsification or invention of any information, including citations, on an assigned exercise; and/or (3) helping or attempting to help another in an act of cheating or plagiarism. Plagiarism is presenting the words or ideas of another person as if they were your own. Examples of plagiarism are (1) submitting an assignment as if it were one's own work when, in fact, it is at least partly the work of another; (2) submitting a work that has been purchased or otherwise obtained from an Internet source or another source; and (3) incorporating the words or ideas of an author into one's paper without giving the author due credit.

Please read the complete policy at http://www.sfasu.edu/policies/4.1-student-academic-dishonesty.pdf.

Any student found cheating will be subject to the penalties as stated in the Student Code of Conduct handbook (http://www.sfasu.edu/policies/student-code-of-conduct-10.4.pdf); including but not limited to a score of zero on exam, expulsion from the class or expulsion from the University.

Withheld Grades Semester Grades Policy (A-54):
Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average.

The circumstances precipitating the request must have occurred after the last day in which a student could withdraw from a course. Students requesting a WH must be passing the course with a minimum projected grade of C.

Students with Disabilities:
To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in
the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices/.

MENTAL HEALTH:
SFASU values students’ mental health and the role it plays in academic and overall student success. SFA provides a variety of resources to support students’ mental health and wellness. Many of these resources are free, and all of them are confidential.

On-campus Resources:
SFASU Counseling Services
www.sfasu.edu/counselingservices
3rd Floor Rusk Building
936-468-2401

SFASU Human Services Counseling Clinic
www.sfasu.edu/humanservices/139.asp
Human Services Room 202
936-468-1041

Crisis Resources:
Burke 24-hour crisis line 1(800) 392-8343
Suicide Prevention Lifeline 1(800) 273-TALK (8255)
Crisis Text Line: Text HELLO to 741-741