Name: Dr. Alyx S. Frantzen
Department: Chemistry
Email: afrantzen@sfasu.edu
Website: www.faculty.sfasu.edu/
Phone: (936) 468-2338
Office: M 119
Student Hours: T 3:00-4:00pm; T 5:00-6:00; W 12:00-1:00 pm; W 9:00-11:00 am; F 10:00-11:00 am
other times by appointment; if my door is open, I am generally available.
Class Hours: TR 9:30-10:50 pm; TR 11:00-12:15 pm; T 3:00-4:00pm; T 5:00-6:00pm; W 12:00-1:00 pm; W 2:00-5:00 pm; F 1:00-3:50 pm

Text and Materials:
Laboratory Notebook
Suggested Text:

COURSE CALENDAR:
Student will conduct an independent research project under the direction of the professor. The student will adhere to an agreed timeline between the student and professor.

HOUR JUSTIFICATION:
This course is for 1-4 credits and repeatable. The course involves a mentored research experience for the duration of a semester (15 weeks) designed to develop research skills through participating in research and to develop some of the skills needed for professional success after graduation. Students are expected to prepare prior to each lab (literature and concepts), attend research hours (minimum of 3 hours per week per credit hour to conduct experiments), and report results (paper, presentation). Students have required academic components and deliverables: written work (daily notebook, research paper) and oral (presentation). These activities, inclusive of the lab expectations and academic components, average a minimum of 6 hours of work each week per credit hour.

GRADING POLICY:
Students will demonstrate an understanding of the project subject, standard laboratory procedures, and present their final results appropriately. The student will present a proposal of the research being done. This will include: a detailed outline, 200 word abstract, literature review, purpose, methods, results, and conclusion. Student will also demonstrate good laboratory etiquette and following procedures, maintaining a well organized and well documented laboratory notebook and presenting at group meeting. The outline will be submitted in the second week of the semester.
Grading Scale:

<table>
<thead>
<tr>
<th>Standard Laboratory Procedures</th>
<th>100 pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notebook</td>
<td>100 pts</td>
</tr>
<tr>
<td>Proposal</td>
<td>200 pts</td>
</tr>
</tbody>
</table>

Pass ≥ 280; Fail < 280

Attendance Policy:
Student must adhere to the agreed upon timeline set by agreement with the professor.

Academic Integrity (A-9.1):

Academic integrity is a responsibility of all university faculty and students. Faculty members promote academic integrity in multiple ways including instruction on the components of academic honesty, as well as abiding by university policy on penalties for cheating and plagiarism.

Definition of Academic Dishonesty

Academic dishonesty includes both cheating and plagiarism. Cheating includes but is not limited to (1) using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class; (2) the falsification or invention of any information, including citations, on an assigned exercise; and/or (3) helping or attempting to help another in an act of cheating or plagiarism. Plagiarism is presenting the words or ideas of another person as if they were your own. Examples of plagiarism are (1) submitting an assignment as if it were one's own work when, in fact, it is at least partly the work of another; (2) submitting a work that has been purchased or otherwise obtained from an Internet source or another source; and (3) incorporating the words or ideas of an author into one's paper without giving the author due credit.

Any student found cheating will be subject to the penalties as stated in the Student Code of Conduct handbook; including but not limited to a score of zero on exam, expulsion from the class or expulsion from the University.

Withheld Grades Semester Grades Policy (A-54):

Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average.

The circumstances precipitating the request must have occurred after the last day in which a student could withdraw from a course. Students requesting a WH must be passing the course with a minimum projected grade of C.

Semester Withdrawals: Last day to withdraw from the course without obtaining WP or WF grade is March 18th.
Students with Disabilities:
To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices/.

Classroom Behavior Policy:
To ensure a classroom environment conducive to learning, any forms of classroom disruptions will not be tolerated (examples but not limited to – talking, use of cell phones/beepers, sleeping, reading other material, eating/drinking). Students who violate these rules will be asked to leave. Repeat offenders will be subject to disciplinary action in accordance with University policies as described in the Code of Student Conduct.
Course Syllabus
Chemistry 275
Supervised Problems

Course Description: Individual study and/or laboratory research.

Number of Credit Hours: 1 – 4 semester hours

Course Prerequisites and Corequisites: Prerequisite: Permission of instructor. Pass-Fail grading.

Program Learning Outcomes:
3. The student will perform qualitative/quantitative chemical analyses/syntheses using modern instrumentation.
4. The student will articulate scientific information through oral communication. (depending on instructor or project)
5. The student will articulate scientific information through written communication.
6. The student will demonstrate ability to integrate knowledge content, laboratory skill, critical thinking and problem solving, and communication skills via participation in research projects.

General Education Core Curriculum Objectives: There are no specific general education core curriculum objectives in this course. This course is not a general education core curriculum course.

Course Objective: The student should demonstrate their ability to conduct independent research.

Student Learning Outcomes: Upon completion of this course, students will be able to:
- apply the chemistry knowledge obtained during the college career. (PLO 3, 6)
- analyze experimental results based upon trends in data. (PLO 5)
- practice the safe use/handling of chemicals and their proper storage. (PLO 3)

Outline of Topics (approximate course time):
Variable: dependent on instructor and selected course content.