CHE 111-004
Classroom: Chemistry 106
Class Time: 11:00—12:15 TR

Instructor: Bidisha Sengupta, Ph.D.
Office: Math 112
Email: bidisha.sengupta@sfasu.edu

Student Hours: M (9:00-10:50 PM);
W (3:00-5:20 PM); F (8:00-9:50)
Other time by appointment (email me to make appointment)
Phone: (936)-468-2485

IT IS STRONGLY RECOMMENDED THAT YOU READ AND UNDERSTAND THE POLICIES OUTLINED IN THIS SYLLABUS. IF YOU SHOULD HAVE QUESTIONS ABOUT ANYTHING CONTAINED HEREIN, PLEASE CONTACT ME AS SOON AS POSSIBLE!

Course Description:
Introductory Chemistry. Introduction to the principles and concepts of chemical thought.
Co-requisite: CHE 111L. Pre-requisite: eligibility for MTH 138.

Text and Materials:

*Loose-leaf versions are available at the local bookstores that contain access codes to Mastering Chemistry, the required on-line homework.
*An ebook option is available to you when you sign up for your Mastering Chemistry account.
*If you buy an older edition of the book, you may buy the access code independently online.
*REQUIRED: Mastering Chemistry Homework Account (It comes automatically with ebook.)

A non-programmable, scientific calculator is required for all exams and quizzes. All course information will be posted on D2L and course announcements will be emailed to students via D2L. Students are required to check D2L regularly.

Course Calendar: On separate page

Grading Policy:

4-hour exams (100 pts per test). The dates and times of exams are shown on the course calendar. Exams may consist of any of the following types of questions: problems that must be set up and solved, nomenclature, discussion questions, fill in the blank, matching, and/or multiple choice. Partial credit may be given on some types of questions so it is important to always show your work. Credit will not be given for correct answers unless you show how you arrived at the answer.
Final Exam – The final exam will be comprehensive. It is worth 100 points.

Quizzes - Quizzes (10 pts each) will be given periodically in class, usually at the beginning of class. Announced or pop-quizzes are possible. No make up quizzes will be given. (50-100 points depending on the number of quizzes).

Group assignments - Group assignments will be given periodically in class. The point value will be indicated on each group assignment. No make-up group work will be allowed.

Online Homework – 1. Go to pearsonmylabandmastering.com. Under Register, select Student. 3. Confirm you have the information needed, then select OK! Register now. 4. Enter your instructor’s course ID: sengupta92521, and Continue. 5. Enter your existing Pearson account username and password to Sign In. You have an account if you have ever used a MyLab or Mastering product. If you don’t have an account, select Create and complete the required fields. The total points of group assignments and on-line homework will be averaged and will total 100 points for the class.

Method of Evaluation: The final grade will be based upon percentage of points obtained in the following:

<table>
<thead>
<tr>
<th>Grading Activity</th>
<th>Date</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
<td>Feb. 3</td>
<td>Mathematics 101 (6-8 PM)</td>
</tr>
<tr>
<td>Exam 2</td>
<td>Mar. 2</td>
<td>Mathematics 101 (6-8 PM)</td>
</tr>
<tr>
<td>Exam 3</td>
<td>Mar. 30</td>
<td>Mathematics 101 (6-8 PM)</td>
</tr>
<tr>
<td>Exam 4</td>
<td>April 27</td>
<td>Mathematics 101 (6-8 PM)</td>
</tr>
<tr>
<td>Final Exam</td>
<td>May 5</td>
<td>In the lecture class (10:45 AM-1:15 PM)</td>
</tr>
<tr>
<td>Weekly Quizzes</td>
<td>To be announced</td>
<td>In the lecture class</td>
</tr>
<tr>
<td>Homework and group assignment</td>
<td>To be announced</td>
<td>Online and group</td>
</tr>
</tbody>
</table>

Letter Grade	Percent
A | ≥90
B | ≥80
C | ≥70
D | ≥60
F | <60

CLASS POLICY
ATTENDANCE POLICY:
Attendance of class is mandatory. Nine (9) or more absences will result in an ‘F’ for the course. Absences may be assigned to anyone that disrupts class, sleeps in class, or consistently comes in late or
leaves early. **Six points will be added to the point total of anyone that has zero absences. Four points will be added to the point total of anyone that has only one absence. Two points will be added to the point total of anyone that has only two absences.** Anyone with three absences or fewer will have the option of the percentage of their final exam grade replacing their lowest exam grade. [For the purpose of the bonus attendance points there is no distinction between excused and unexcused absences]. For a **proven, excused absence** for an exam during the semester, a comprehensive make up exam will be given a week before the final.

ACADEMIC INTEGRITY (A-9.1):

Academic integrity is a responsibility of all university faculty and students. Faculty members promote academic integrity in multiple ways including instruction on the components of academic honesty, as well as abiding by university policy on penalties for cheating and plagiarism.

Definition of Academic Dishonesty

Academic dishonesty includes both cheating and plagiarism. Cheating includes but is not limited to (1) using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class; (2) the falsification or invention of any information, including citations, on an assigned exercise; and/or (3) helping or attempting to help another in an act of cheating or plagiarism. Plagiarism is presenting the words or ideas of another person as if they were your own. Examples of plagiarism are (1) submitting an assignment as if it were one's own work when, in fact, it is at least partly the work of another; (2) submitting a work that has been purchased or otherwise obtained from an Internet source or another source; and (3) incorporating the words or ideas of an author into one's paper without giving the author due credit.

Please read the complete policy at http://www.sfasu.edu/policies/academic_integrity.asp

Any student found cheating will be subject to the penalties as stated in the Student Code of Conduct handbook; including but not limited to a score of zero on exam, expulsion from the class or expulsion from the University.

WITHHELD GRADES SEMESTER GRADES POLICY (A-54):

Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average.

The circumstances precipitating the request must have occurred after the last day in which a student could withdraw from a course. Students requesting a WH must be passing the course with a minimum projected grade of C.

STUDENTS WITH DISABILITIES:

To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be
CLASSROOM BEHAVIOR POLICY:

Acceptable Student Behavior: Classroom behavior should not interfere with the instructor’s ability to conduct the class or the ability of other students to learn from the instructional program (see the Student Conduct Code, policy D-34.1). Unacceptable or disruptive behavior will not be tolerated. Students who disrupt the learning environment may be asked to leave class and may be subject to judicial, academic or other penalties. This prohibition applies to all instructional forums, including electronic, classroom, labs, discussion groups, field trips, etc. The instructor shall have full discretion over what behavior is appropriate/inappropriate in the classroom. Students who do not attend class regularly or who perform poorly on class projects/exams may be referred to the Early Alert Program. This program provides students with recommendations for resources or other assistance that is available to help SFA students succeed.

CLASSROOM BEHAVIOR EXPECTATIONS:

- Come to class prepared (spend at least 2 hours working problems and reviewing previous material before each class period) and be on time and in your seat.
- Absences may be assigned to anyone that disrupts class, sleeps in class, or consistently comes in late or leaves early. Read Attendance Policy Section for how this can affect grades.
- Bring a NON-programmable, scientific calculator. Cell phones and programmable calculators may NOT be used on quizzes or exams.
- Turn off and put away cell phones; NO text messaging during class. Anyone caught using a cell phone during class will have an absence assigned to them.
- Be courteous and respectful of other students, SI leader, and instructor.
- Learn your section number and your row number. Place row number on all items turned in.
- Significant figures are required on all answers given on quizzes, assignments and exams.
- No make up quizzes will be given if a student comes in late and misses the quiz.
- Students who violate these rules will be asked to leave. Repeat offenders will be subject to disciplinary action in accordance with University policies as described in the Code of Student Conduct.
- You are NOT ALLOWED to use laptops, tablets, or iPads to take notes in class.

TIPS TO BE SUCCESSFUL

A few philosophical musings on Into to Chemistry after having taught the subject for more than 10 years:

Intro to Chemistry is a cumulative course; more so than any other course that you will probably take as an undergraduate. You must immerse yourself in the course if you wish to succeed. You cannot expect to simply come to class and succeed. You cannot be merely involved in the course. You have to be committed to mastering the material in order to succeed. The difference between “being involved” and “being committed” can be illustrated with a simple breakfast of eggs and bacon. The chicken was involved. The pig was committed. That’s the type of commitment that you will need to be successful in this course. Don’t be afraid to come and get help. You can get behind very easily, without even realizing it, in this course. Come and get help before exams. I can’t do much to help you after the exam.
Some of these resources are:

Your instructor:
- Come see me during office hours or email me to make an appointment. I should be your first line of defense. I know what material is being taught, what material will be on exams, and what material you need to know (after all, I am the one who writes the quizzes & exams). You’ve already paid for me when you paid your course tuition. Don’t hesitate to come for help. I want to see you improve and do well. Don’t think that your question is unimportant or that you are wasting my time. I have office hours to help you. That’s why they are there. Even if you are behind, come get help.

The AARC: You can get one-on-one tutoring at the AARC. Contact the AARC for more specific information on how to get a one-on-one tutor. You need to do this quickly, as only a limited number of slots are available and they fill up rapidly.
- There is also a Chemistry walk-in table at the AARC. Check with the AARC for more information.
- There will not be an SI group for this class

Make sure you are equipped for success:

- All you need to do well in this class are the texts, pencils, and paper. A good model kit might not be a bad idea. If you have a friend in the class, you might one to buy one together and share the cost. Please see me if you want me to recommend a good kit.
- A good 3-ring notebook to keep your lecture notes and handouts. The ability to be organized is an important skill in this class. It will save you from wasting your precious study time looking for stuff.
- Plenty of pencils and paper for working problems
- A quiet place to study regularly

JUSTIFICATION FOR HOURS
This course is for 3 credits and spans 15 weeks. The course contains extensive content requiring students to prepare by completing the assigned weekly reading, homework, online content, etc. Students have significant weekly reading and homework assignments involving critical thinking and quantitative reasoning. Students are tested over the material via several exams during the semester including a comprehensive final exam. These activities average at a minimum 6 hours of work each week to prepare outside of time spent engaging with the content.

CORE OBJECTIVES AND RESOURCES
General Education Core Curriculum Objectives: The Texas Higher Education Coordinating Board has identified six core learning objectives: Critical Thinking Skills, Communication Skills, Empirical and Quantitative Skills, Teamwork, Personal Responsibility, and Social Responsibility. SFA is committed to the improvement of its general education core curriculum by regular assessment of student performance on these six objectives. Although this chemistry course develops the first four core-learning objectives, it only submits assessment assignments to the University Core Assessment Committee every even Spring for the Teamwork general education core curriculum requirement. If this is an even spring semester, another, “shell”
course has been created to collect student artifacts to meet this state requirement. You will see this course on your D2L list.

During the even spring semester, you will receive an assignment in the laboratory portion of the course that fulfills both the requirements of the lab and the needs of Stephen F. Austin State University’s Core Curriculum Assessment Plan with the Texas Higher Education Coordinating Board. When you complete this one assignment, you need to upload the assignment to both the Chemistry dropbox and the Teamwork dropbox. Please note that this only applies to the specific teamwork assignment given in the lab section of this course. All other assignments should be submitted according to regular class operations. If you have any questions, please see your instructor or contact the University Assessment Specialist at (936) 468-1267 or jstringfield@sfasu.edu.

Below is a description of each Core Objective, followed by a chart that shows the topics covered in this course with their corresponding core objectives.

Core Objective 1: Critical Thinking: to include creative thinking, innovation, inquiry and analysis, evaluation and synthesis of information.

Definition of **CRITICAL THINKING**: disciplined thinking that is clear, rational, open-minded, and informed by evidence.

Critical thinking involves the use of a group of interconnected skills. The skills needed can be broken down into six steps.

Six Steps of CRITICAL THINKING

1. **Knowledge** means a student must have basic knowledge about the subject.
2. **Comprehension** requires understanding of the subject. Students that comprehend the new knowledge are able to relate the new knowledge to what they already know. Comprehending goes beyond simply parroting material back.
3. **Application** requires both knowledge and comprehension. Students must be able to carry out a task or apply their knowledge and comprehension to an assigned task.
4. **Analysis** involves breaking the knowledge down into smaller parts so it become clear how the smaller parts are related to other ideas.
5. **Synthesis** involves the ability to put together the parts you analyzed with other information to create something original.
6. **Evaluation** occurs once we have understood and analyzed what is said or written and the reasons offered to support it. Then we can appraise this information in order to decide whether you can give or withhold belief, and whether or not to take a particular action.

Adapted from: http://www.mhhe.com/socsicence/philosophy/reichenbach/m1_chap02studyguide.html (accessed May 23, 2013)

Core Objective 2: Communication Skills: to include effective development, interpretation and expression of ideas through written, oral, and visual communication.
COMMUNICATION SKILLS in the sciences

For an excellent resource in scientific communication from a highly reputable source see the information provided on the Nature website link shown below.

http://www.nature.com/scitable/topic/scientific-communication-14121566 (accessed May 31, 2013)

Three especially informative links within the link shown above are:

- Effective Communication
- Effective Writing
- Audience/Purpose

Core Object 3: Empirical and Quantitative Skills: to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.

EMPIRICAL AND QUANTITATIVE SKILLS

Chemists rely on observations to explain the nature of the substances they study. There are two types of observations exist: qualitative and quantitative. A qualitative observation is an observation made with the senses and is usually expressed using words instead of numbers. Qualitative observations about a person sick in the hospital might include that the person is breathing rapidly, has a high temperature, and is very thin.

A quantitative observation is an observation that requires a numerical measurement and describes something in terms of “how much”. The quantitative observation that a person has a temperature of 103.6 °F is much more useful information than just knowing that the person has a fever. Quantitative observations are preferred by scientists. Often quantitative data is acquired in lab.

One or more measurement is always a part of any quantitative observation. A measurement determines the dimensions, capacity, quantity, or extent of something. The most common types of measurements made in chemical laboratories are those of mass, volume, length, temperature, pressure, and concentration. Measurements always consist of two parts: a number, which tells the amount of the quantity measured, and a unit, which tells the nature or kind of quantity measured. A measured number without a unit is meaningless.

Once quantitative data is obtained, chemists then mathematically manipulate and analyze data. Adapted from saplinglearning.com; accessed May 31, 2013

Core Objective 4: Teamwork: to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal.

Definition of TEAMWORK: work done by several associates with each doing a part but all subordinating personal prominence to the efficiency of the whole.

TEAMWORK General Rules

Each team member needs:

- all ideas evaluated critically;
- treat others in the group with respect
- everyone needs to pull their weight, meet deadlines, and contribute equally;
- actions need to be followed through;
- reporting needs to be accurate and comprehensive;
- problems with under-performing team members need to be discussed openly and resolved quickly; and
- peer assessment should be given fairly

Summary:

<table>
<thead>
<tr>
<th>Core Objective 1: Critical Thinking Skills</th>
<th>To include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Objective 2: Communication Skills</td>
<td>To include effective development, interpretation and expression of ideas though written, oral, and visual communication.</td>
</tr>
<tr>
<td>Core Objective 3: Empirical and Quantitative Skills</td>
<td>To include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.</td>
</tr>
<tr>
<td>Core Objective 4: Teamwork</td>
<td>To include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal. This Core Objective is Strongly Emphasized in Lab.</td>
</tr>
</tbody>
</table>

Student Learning Outcomes: Upon completion of this course, the students are expected to

- apply chemistry concepts using critical thinking skills and the scientific method to analyze and evaluate information to reach conclusions within problem sets and lab experiments. (COs 1 & 3)
- use communication skills to demonstrate their interpretation and analysis of scientific data. (CO 2)
- apply logic, quantitative reasoning, and pattern recognition to analyze and evaluate numerical data/observable facts to reach conclusions within problem sets and lab experiments. (COs 1 & 3)
- demonstrate the ability to cooperate within groups to gather results of an experiment, analyze data, and draw conclusions using communication skills. (COs 2 & 4)

Course Topics: (Course Calendar follows this chart)

<table>
<thead>
<tr>
<th>Ch</th>
<th>Topic</th>
<th>Core Objective</th>
<th>Specifics…</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Definition of Chemistry</td>
<td>Core Objective 1: Critical Thinking Skills</td>
<td>Analyzing and Interpreting data from a scientific investigation. Inquire about</td>
</tr>
<tr>
<td>Week</td>
<td>Topic</td>
<td>Core Objectives</td>
<td>Additional Notes</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2</td>
<td>Measurement</td>
<td>Core Objective 3: Empirical and Quantitative Skills</td>
<td>In problem solving, learn to apply significant figures and apply the terms accuracy and precision to measurements.</td>
</tr>
</tbody>
</table>
| 3 | Atoms and Periodic Table; Classifying Matter; Physical and Chemical Properties and Changes; Energy | Core Objective 2: Communication Skills
Core Objective 4: Teamwork | Identify and justify as a class classification of matter and types of changes. |
| 4 | Parts of the Atom (subatomic particles); Ions and Isotopes, Reactions | Core Objective 1: Critical Thinking Skills | Analyze composition of ions after gaining or losing electrons. Calculating atomic mass. |
| 5 | Chemical Bonding: Writing and Naming Chemical Compounds | Core Objective 1: Critical Thinking Skills
Core Objective 2: Communication Skills
Core Objective 4: Teamwork | Analyze and communicate with class both molecular vs. ionic compounds; construct proper formulas and discuss and justify names of compounds. |
<p>| 6 | Chemical Composition: Introducing the Mole and its Relationship with Grams. | Core Objective 3: Empirical and Quantitative Skills | Convert between particles, grams, and moles; calculate mass percent and empirical formulas. |
| 7 | Types of Reactions | All Core Objectives | Identify type of reaction; analyze reactants and determine products; balance reactions |
| 8 | Stoichiometry and Enthalpy Problems | Core Objective 3: Empirical and Quantitative Skills | Given an amount of a reactant or product, be able to calculate the amount of all other compounds/molecules in the reaction. Determine limiting reactant and % |</p>
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Core Objective 1: Critical Thinking Skills</th>
<th>Core Objective 2: Communication Skills</th>
<th>Core Objective 3: Empirical and Quantitative Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Lewis Dot Structures and 3-D Molecular Geometry of Molecules. Lewis Dot Structures of Ionic Solids. Polarity.</td>
<td>Analyze and construct a 3-D model of a molecule given valence electrons. Determine the overall polarity of molecules by evaluating polar bonds within the molecule.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Gas Behavior Given Various Conditions and Changes.</td>
<td>Communicate the effect on a gas when either volume, pressure, or temperature of a gas is changed. Calculate exact values of these changes using the gas laws.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Intermolecular Forces</td>
<td>Communicate how intermolecular forces determine state of matter, volatility, and viscosity. Perform enthalpy calculations for vaporization and fusion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Solution Concentration, Types of Solutions, Titrations, and Colligative Properties</td>
<td>Solve for Concentration in a solution or for a titration; Analyze how solute particles affect vapor pressure, melting point, boiling point, and osmotic pressure. Discuss the effect of hyper-, hypo- and</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
isomotic solutions on cells.

14 Acid and Base Definitions and Properties Core Objective 1: Critical Thinking Skills; Core Objective 3: Empirical and Quantitative Skills Identify acid and base properties. Analyze an acid's and base’s conjugate pair. Calculate pH, pOH, $[H_3O^+]$ and $[OH^-]$

15 Equilibrium Core Objective 1: Critical Thinking Skills; K_{eq} calculations and Le Chatelier’s Principle

17 Nuclear Chemistry Core Objective 2: Communication Skills Types of radioactive decay; Fission vs. fusion

COURSE CALENDAR: Disclaimer: Dr. Bidisha Sengupta reserves the right to review, and make changes to this document as deemed necessary. Materials will be covered in the following section order with approximate class time. Exam schedule is tentative.
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/18</td>
<td>CH 6: Chemical Composition</td>
<td>2/20</td>
<td>CH 6: Chemical Composition; CH 7: Chemical Reactions</td>
</tr>
<tr>
<td>2/25</td>
<td>CH 7: Chemical Reactions</td>
<td>2/27</td>
<td>CH 7: Chemical Reactions</td>
</tr>
<tr>
<td>3/2</td>
<td>EXAM II (CH 5-7)</td>
<td>3/3</td>
<td>CH 8: Quantities in Chemical rxns</td>
</tr>
<tr>
<td>3/3</td>
<td>Spring Break</td>
<td>3/5</td>
<td>CH 8: Quantities in Chemical rxns</td>
</tr>
<tr>
<td>3/17</td>
<td>CH 9: Electrons in Atoms and the Periodic Table</td>
<td>3/19</td>
<td>CH 9: Electrons in Atoms and the Periodic Table</td>
</tr>
<tr>
<td>3/24</td>
<td>CH 10: Chemical Bonding</td>
<td>3/26</td>
<td>CH 10: Chemical Bonding</td>
</tr>
<tr>
<td>3/30</td>
<td>EXAM III (CH 8-10)</td>
<td>3/31</td>
<td>CH 13: Solutions</td>
</tr>
<tr>
<td>4/2</td>
<td>CH 13: Solutions; CH 14: Acids and Bases (+Equilibrium)</td>
<td>4/30</td>
<td>CH 17</td>
</tr>
<tr>
<td>4/7</td>
<td>CH 13: Solutions; CH 14: Acids and Bases (+Equilibrium)</td>
<td>4/9</td>
<td>Easter Holiday</td>
</tr>
<tr>
<td>4/14</td>
<td>CH 13: Solutions; CH 14: Acids and Bases (+Equilibrium)</td>
<td>4/16</td>
<td>CH 14: Acids and Bases (+Equil)</td>
</tr>
<tr>
<td>4/21</td>
<td>CH 11 Gases</td>
<td>4/23</td>
<td>CH 11 Gases</td>
</tr>
<tr>
<td>4/27</td>
<td>EXAM IV (CH 11, 13, 14)</td>
<td>4/28</td>
<td>CH 17 Radioactivity & Nuclear Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4/30</td>
<td>CH 17</td>
</tr>
</tbody>
</table>

Section 111-004 Final Exam, Tuesday May 5, 10:45 am - 1:15 pm
Statement of Acknowledgement

PRINT LEGIBLY

I have read and understood the policies outlined in the course syllabus. I agree to abide by and follow the policies. I have been advised that if I do not agree to follow the policies outlined in the course syllabus, I should withdraw from the course.

___ _____________
Signature Date

PRINT NAME

READ the syllabus thoroughly. Print this page, sign and return by January 21, 2020