Class Syllabus
Fall 2020
CHE 1305-700 & 701
Introductory Chemistry I

Instructor: Dr. Kefa K. Onchoke
Department: Chemistry & Biochemistry
E-mail: onchokekk@sfasu.edu (Note: Use this e-mail address for quick and timely response)
Office: M-118 (Math Building)
Phone: 936-468-2386

Office Hours: M 12-1, 4-5; W 12-1; R 2-3, 4-5; R 12-1. By email and via zoom video conferencing. Zoom appointments are most convenient during these times. You can email professor to set up a Zoom meeting. An ID and password will be provided for any appointed meeting.

Lecture times: CHE 111-700 MWF 10.00 am - 10.50 a.m. Via Zoom.
CHE111-701 TR 11-12.15pm Via Zoom

Times: There are no face-to-face meeting as this course is delivered fully via livestream and online via D2L. All due dates in the syllabus and D2L are based on CDT/CST (Texas) time zones. Late assignments or extensions will not be considered due to difference in time zones.

OnLine Support: http://d2l.sfasu.edu

COURSE DESCRIPTION:
Introductory Chemistry. Introduction to the principles and concepts of chemical thought. Co-requisite: CHE 111L. Prerequisite: eligibility for MTH 138. (Algebra). This course is intended for non-chemistry majors. Chemistry and science majors need to take CHE133/134.

This course is for 3 credits and typically meets for 150 minutes a week for fifteen weeks plus meets for a 2-hour final examination. Students have significant daily reading and homework assignments involving critical thinking and quantitative reasoning. Students are tested over the material via quizzes and several exams during the semester including a comprehensive final exam. These activities average at a minimum 6 hours of work each week to prepare outside of classroom hours.

TEXT AND MATERIALS:
or
Suggested other Text and Materials:
Note: Any chemistry textbook can be used as a resource to supplement the PowerPoint slides

2. Scientific calculator (non-graphing and non-programmable); for example, SHARP EL-501WBBK, CASIO 115, Texas Instrument 30 XIIS. No programming or graphing calculators are to be used in exams and/or quizzes.

3. Mastering Chemistry Website:
http://www.pearsonmylabandmastering.com/northamerica/masteringchemistry/
   a. You need first three things to register for the assignments:
      E-mail
      Course ID: onchoke38317 (Course Name: CHE1305-700)
      Course ID: onchoke02415 (Course Name: CHE1305-701)

      Access Code or Credit Card

   b. You will purchase the access code online or use a Credit Card

   c. Instruction for logging to textbook Students:
      1. Go to http://masteringchemistry.com and register at the top right.
      2. (a) If you already have a Mastering Chemistry account, log and go to step 3 in and follow the instructions.
(b) Choose a password and timezone (Chicago), accept the site policy agreement, and click "Create my new account".

2c. Click the "Create an Account" link. Supply the requested information and click "Create My Account". Check your email (and spam filter) for a message from Mastering Chemistry Learning and click on the link provided in that email.

3. Find your course in the list (you may need to expand the subject and term categories) and click the link.

4. If your course requires a key code, you will be prompted to enter it.

5. If your course requires payment, select a payment option and following the remaining instructions.

Once you have registered and enrolled, you can log in at any time to complete or review your homework assignments. During sign up or throughout the term, if you have any technical problems or grading issues, Go to Student Support section and explain the issue. The Mastering Chemistry support team is almost always faster and better able to resolve issues than your instructor.

Co-requisite: CHE 111L.

PREREQUISITES: Eligibility for MTH 138.

COURSE OBJECTIVES: The student should learn the basic concepts, laws and theories of the topics and apply them to chemistry problems. The student will develop an understanding of the interconnectedness of chemistry to the other sciences and will relate the concepts of chemistry to contemporary, historical, technological and societal issues.

COVID-19 Safety Guidelines
Masks (cloth face coverings) must be worn over the nose and mouth at all times in this class and appropriate physical distancing must be observed. Students not wearing a mask and/or not observing appropriate physical distancing will be asked to leave the class. All incidents of not wearing a mask and/or not observing appropriate physical distancing will be reported to the Office of Student Rights and Responsibilities. Students who are reported for multiple infractions of not wearing a mask and/or not observing appropriate physical distancing may be subject to disciplinary actions.


CORE OBJECTIVES AND RESOURCES

General Education Core Curriculum Objectives: The Texas Higher Education Coordinating Board has identified six core learning objectives: Critical Thinking Skills, Communication Skills, Empirical and Quantitative Skills, Teamwork, Personal Responsibility, and Social Responsibility. SFA is committed to the improvement of its general education core curriculum by regular assessment of student performance on these six objectives. Although this chemistry course develops the first four core-learning objectives, it only submits assessment assignments to the University Core Assessment Committee every even Spring for the Teamwork general education core curriculum requirement. If this is an even spring semester, another, “shell” course has been created to collect student artifacts to meet this state requirement. You will see this course on your D2L list.

During the even spring semester, you will receive an assignment in the laboratory portion of the course that fulfills both the requirements of the lab and the needs of Stephen F. Austin State University’s Core Curriculum Assessment Plan with the Texas Higher Education Coordinating Board. When you complete this one assignment, you need to upload the assignment to both the Chemistry dropbox and the Teamwork dropbox. Please note that this only applies to the specific teamwork assignment given in the lab section of
this course. All other assignments should be submitted according to regular class operations. If you have any questions, please see your instructor or contact the University Assessment Specialist at (936) 468-1267 or jstringfield@sfasu.edu.

Below is a description of each Core Objective, followed by a chart that shows the topics covered in this course with their corresponding core objectives.

**Core Objective 1: Critical Thinking: to include creative thinking, innovation, inquiry and analysis, evaluation and synthesis of information.**

Definition of **CRITICAL THINKING**: disciplined thinking that is clear, rational, open-minded, and informed by evidence.


**Critical thinking** involves the use of a group of interconnected skills. The skills needed can be broken down into six steps.

**Six Steps of CRITICAL THINKING**

1. **Knowledge** means a student must have basic knowledge about the subject.

2. **Comprehension** requires understanding of the subject. Students that comprehend the new knowledge are able to relate the new knowledge to what they already know. Comprehending goes beyond simply parroting material back.

3. **Application** requires both knowledge and comprehension. Students must be able to carry out a task or apply their knowledge and comprehension to an assigned task.

4. **Analysis** involves breaking the knowledge down into smaller parts so it become clear how the smaller parts are related to other ideas.

5. **Synthesis** involves the ability to put together the parts you analyzed with other information to create something original

6. **Evaluation** occurs once we have understood and analyzed what is said or written and the reasons offered to support it. Then we can appraise this information in order to decide whether you can give or withhold belief, and whether or not to take a particular action.

Adapted from: [http://www.mhhe.com/soscience/philosophy/reichenbach/m1_chap02studyguide.html](http://www.mhhe.com/soscience/philosophy/reichenbach/m1_chap02studyguide.html) *(accessed May 23, 2013)*

**Core Objective 2: Communication Skills: to include effective development, interpretation and expression of ideas through written, oral, and visual communication.**

**COMMUNICATION SKILLS in the sciences**

For an excellent resource in scientific communication from a highly reputable source see the information provided on the Nature website link shown below.
http://www.nature.com/scitable/topic/scientific-communication-14121566 (accessed May 31, 2013)

Three especially informative links within the link shown above are:

- Effective Communication
- Effective Writing
- Audience/Purpose

Core Object 3: Empirical and Quantitative Skills: to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.

EMPIRICAL AND QUANTITATIVE SKILLS

Chemists rely on observations to explain the nature of the substances they study. There are two types of observations exist: qualitative and quantitative. A qualitative observation is an observation made with the senses and is usually expressed using words instead of numbers. Qualitative observations about a person sick in the hospital might include that the person is breathing rapidly, has a high temperature, and is very thin.

A quantitative observation is an observation that requires a numerical measurement and describes something in terms of "how much". The quantitative observation that a person has a temperature of 103.6 °F is much more useful information than just knowing that the person has a fever. Quantitative observations are preferred by scientists. Often quantitative data is acquired in lab.

One or more measurement is always a part of any quantitative observation. A measurement determines the dimensions, capacity, quantity, or extent of something. The most common types of measurements made in chemical laboratories are those of mass, volume, length, temperature, pressure, and concentration. Measurements always consist of two parts: a number, which tells the amount of the quantity measured, and a unit, which tells the nature or kind of quantity measured. A measured number without a unit is meaningless.

Once quantitative data is obtained, chemists then mathematically manipulate and analyze data.

Adapted from saplinglearning.com; accessed May 31, 2013

Core Objective 4: Teamwork: to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal.

Definition of TEAMWORK: work done by several associates with each doing a part but all subordinating personal prominence to the efficiency of the whole.


TEAMWORK General Rules

Each team member needs:

- all ideas evaluated critically;
- treat others in the group with respect;
- everyone needs to pull their weight, meet deadlines, and contribute equally;
- actions need to be followed through;
- reporting needs to be accurate and comprehensive;
- problems with under-performing team members need to be discussed openly and resolved quickly; and
- peer assessment should be given fairly
Summary:

| Core Objective 1: Critical Thinking Skills | To include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information. |
| Core Objective 2: Communication Skills | To include effective development, interpretation and expression of ideas through written, oral, and visual communication. |
| Core Objective 3: Empirical and Quantitative Skills | To include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions. |
| Core Objective 4: Teamwork | To include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal. This Core Objective is Strongly Emphasized in Lab. |

Student Learning Outcomes: Upon completion of this course, the students are expected to

- apply chemistry concepts using critical thinking skills and the scientific method to analyze and evaluate information to reach conclusions within problem sets and lab experiments. (COs 1 & 3)
- use communication skills to demonstrate their interpretation and analysis of scientific data. (CO 2)
- apply logic, quantitative reasoning, and pattern recognition to analyze and evaluate numerical data/observable facts to reach conclusions within problem sets and lab experiments. (COs 1 & 3)
- demonstrate the ability to cooperate within groups to gather results of an experiment, analyze data, and draw conclusions using communication skills. (COs 2 & 4)

Course Topics:

<table>
<thead>
<tr>
<th>Chp</th>
<th>Topic</th>
<th>Core Objective</th>
<th>Specifics…</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Definition of Chemistry</td>
<td>Core Objective 1: Critical Thinking Skills</td>
<td>Analyzing and Interpreting data from a scientific investigation. Inquire about the natural world.</td>
</tr>
<tr>
<td></td>
<td>Scientific Method/Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Measurement</td>
<td>Core Objective 3: Empirical and Quantitative Skills</td>
<td>In problem solving, learn to apply significant figures and apply the terms accuracy and precision to measurements.</td>
</tr>
<tr>
<td>3</td>
<td>Atoms and Periodic Table; Classifying Matter; Physical and Chemical Properties and Changes; Energy</td>
<td>Core Objective 2: Communication Skills Core Objective 4: Teamwork</td>
<td>Identify and justify as a class classification of matter and types of changes.</td>
</tr>
<tr>
<td>4</td>
<td>Parts of the Atom (subatomic particles); Ions and Isotopes</td>
<td>Core Objective 1: Critical Thinking Skills</td>
<td>Analyze composition of ions after gaining or losing electrons. Calculating atomic mass.</td>
</tr>
<tr>
<td>Page</td>
<td>Topic</td>
<td>Core Objectives</td>
<td>Detailed Description</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-----------------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| 5    | Writing and Naming Chemical Compounds | Core Objective 1: Critical Thinking Skills  
Core Objective 2: Communication Skills  
Core Objective 4: Teamwork | Analyze and communicate with class both molecular vs. ionic compounds; construct proper formulas and discuss and justify names of compounds. |
| 6    | Chemical Composition: Introducing the Mole and its Relationship with Grams. | Core Objective 3: Empirical and Quantitative Skills | Convert between particles, grams, and moles; calculate mass percent and empirical formulas. |
| 7    | Types of Reactions | All Core Objectives | Identify type of reaction; analyze reactants and determine products; balance reactions |
| 8    | Stoichiometry and Enthalpy Problems | Core Objective 3: Empirical and Quantitative Skills | Given an amount of a reactant or product, be able to calculate the amount of all other compounds/molecules in the reaction. Determine limiting reactant and % yield. Calculate heat given off or absorbed given an amount of reactant. |
| 9    | Electromagnetic Spectrum; Emission Spectra; Models that Explain Light Emission and Atomic Structure.  
| 10   | Lewis Dot Structures and 3-D Molecular Geometry of Molecules.  
Lewis Dot Structures of Ionic Solids.  
Polarity. | Core Objective 1: Critical Thinking Skills  
Core Objective 3: Empirical and Quantitative Skills | Analyze and construct a 3-D model of a molecule given valence electrons. Determine the overall polarity of molecules by evaluating polar bonds within the molecule. |
| 11   | Gas Behavior Given Various Conditions and Changes. | Core Objective 1: Critical Thinking Skills;  
Core Objective 2: Communication Skills  
Core Objective 3: Empirical and Quantitative Skills | Communicate the effect on a gas when either volume, pressure, or temperature of a gas is changed. Calculate exact values of these changes using the gas laws. |
| 12 | Intermolecular Forces | Core Objectives 1-3 | Communicate how intermolecular forces determine state of matter, volatility, and viscosity. Perform enthalpy calculations for vaporization and fusion. |
| 13 | Solution Concentration, Types of Solutions, Titrations, and Colligative Properties | All Core Objectives | Solve for Concentration in a solution or for a titration; Analyze how solute particles affect vapor pressure, melting point, boiling point, and osmotic pressure. Discuss the effect of hyper-, hypo- and isosmotic solutions on cells. |
| 14 | Acid and Base Definitions and Properties | Core Objective 1: Critical Thinking Skills; Core Objective 3: Empirical and Quantitative Skills | Identify acid and base properties. Analyze an acid’s and base’s conjugate pair. Calculate pH, pOH, \([H_3O^+]\) and \([OH^-]\) |
| 15 | Equilibrium | Core Objective 1: Critical Thinking Skills; \(K_{eq}\) calculations and Le Chatelier's Principle |
| 17 | Nuclear Chemistry | Core Objective 2: Communication Skills | Types of radioactive decay; Fission vs. fusion |

**General Education Core Curriculum**

This course has been selected to be part of Stephen F. Austin State University’s core curriculum. The Texas Higher Education Coordinating Board has identified six objectives for all core courses: Critical Thinking Skills, Empirical and Quantitative Skills, Communication Skills, and Nuclear Chemistry.

**COURSE CALENDAR (APPROXIMATE TIME):**

Chapters from the text will be covered in the following order. Exam schedule is tentative.

1. The chemical World, Methods and Measurements, **Chapters 1 and 2** (5-15%).
2. Matter and Energy, **Chapter 3** (5-15%).
3. Atoms and Elements, Ions, and the Periodic Table **Chapter 4** (5-15%)
   - **Exam 1, Wednesday, September 19.**
4. **Electrons in Atoms and the Periodic Table** (chapter 9)
5. Compounds and Their Bonds: (Structure and Properties of Ionic and Covalent Compounds) **Chapt. 5** (5-15%).
6. Inorganic and Organic compounds, Names and Formulas **Chapter 5 & 6** (5-15%)
7. Structures of solids and Liquids, Chemical Bonding (**Chapter 10**)
8. Chemical Quantities and Reactions **Chapt. 7- 8** (5-15%)
9. Oxidation and reduction (Chapter 16)
10. Chemical Equilibrium **Chapt. 15** (5-15%)
    - **Exam II, Wednesday, October 24.**
11. Gases, **Chapt. 11** (5-15%)
12. Solutions, **Chapter 13** (5-15%)
    - **Exam III, Wednesday, November 18 & Thursday, November 19**
13. Acids and Bases, **Chapter 14** (5-15%)
14. Nuclear Radiation, The Nucleus, Radioactivity, and Nuclear Medicine, **Chapter 17** (5-15%)
    - **Exam IV, Monday, December 3.**

**Comprehensive makeup: Wednesday; December 5, 6:00 pm - 8:00 pm (in NM 132)**
### Comprehensive Final Exam:

- **CHEM. 111-005**: Monday Dec. 10, (8.00 a.m. -10.00 am in M-132)
- **CHEM. 111-007**: Wednesday; Dec. 12, (8.00 a.m. -10.00 pm in M-132)

### COURSE CALENDER (APPROXIMATE TIME):

<table>
<thead>
<tr>
<th>Week</th>
<th>Chapter Topics &amp; Exams</th>
<th>Chapter Topics &amp; Exam Dates</th>
<th>Approximate Online assignment due dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>Chapters 1 and 2</strong>: Chemistry &amp; Measurements</td>
<td>8/24 - 8/24 &amp; (3 lectures)</td>
<td>9/6</td>
</tr>
<tr>
<td>2</td>
<td><strong>Chapter 3</strong>: Matter and Energy</td>
<td>8/31/ - 9/4 (3 lectures)</td>
<td>9/13</td>
</tr>
<tr>
<td>3 &amp; 4</td>
<td><strong>Chapt. 4</strong>: Elements, Atoms, Ions, and the Periodic Table</td>
<td>9/7 - 9/18 (2 to 6 lectures)</td>
<td>9/20</td>
</tr>
<tr>
<td>4</td>
<td><strong>Exam I</strong></td>
<td><strong>Sept. 16 (6.00- 8.00 p.m.) for CHE 1305 -700 (MWF)</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Sept. 17 (6.00- 8.00 p.m.) for CHE 1305 -701 (TR)</strong></td>
<td></td>
</tr>
<tr>
<td>5 &amp; 6</td>
<td><strong>Chapt. 9</strong>: Electronic Structure and Periodic Trends**</td>
<td>9/21 - 10/2</td>
<td>9/27</td>
</tr>
<tr>
<td></td>
<td><strong>Chapter 5 &amp; 6</strong>: Names and Formulas of Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Chapt. 10</strong>: Structures of solids and Liquids (Structure and Properties of Ionic and Covalent Compounds); Compounds and Their Bonds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Chapt. 7</strong>: Chemical Reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Chapt. 8</strong>: Chemical Quantities in Reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><strong>Chapter 16</strong>: Oxidation and reduction</td>
<td>10/5 – 10/9</td>
<td>10/11</td>
</tr>
<tr>
<td>8</td>
<td><strong>Chapt. 15</strong>: Chemical Equilibrium</td>
<td>10/12 -10/16</td>
<td>10/16</td>
</tr>
<tr>
<td>9</td>
<td><strong>Exam II</strong></td>
<td><strong>CHE 1305-700:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>October 21 (6.00- 8.00 p.m.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>CHE 1305-701:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>October 22 (6.00- 8.00 p.m.)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><strong>Chapt. 11</strong>: Gases</td>
<td>10/19 - 10/23</td>
<td>10/25</td>
</tr>
<tr>
<td>11</td>
<td><strong>Chapt. 13</strong>: Solutions</td>
<td>10/26- 10/30</td>
<td>10/30</td>
</tr>
<tr>
<td>11</td>
<td><strong>Exam III</strong></td>
<td><strong>Nov. 18 &amp; 19 (6.00- 8.00 p.m.)</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>CHE1305-700 &amp; CHE 1305-701</strong></td>
<td></td>
</tr>
<tr>
<td>12 &amp;11</td>
<td><strong>Chapter 14</strong>: Acids and Bases</td>
<td>10/30 - 11/18</td>
<td>11/13</td>
</tr>
<tr>
<td>13</td>
<td><strong>Chapter 17</strong>: Radioactivity</td>
<td>11/ 30-12/4</td>
<td>12/6</td>
</tr>
</tbody>
</table>
**Comprehensive Final Exam: **CHEM. 1305-700 (MWF): Wednesday, December 9, 10:45 a.m. - 1:15 p.m (Via D2L BrightSpace).

**Comprehensive Final Exam: **CHEM. 1305-701 (TR): Thursday, December 10, 10:45 a.m. - 1:15 p.m (Via D2L BrightSpace).

*Final Exam:*
- Your final exam will be a comprehensive, online exam.
- The exam consists of multiple-choice questions, and is graded online.
- More specific info about the final will be given during dead week.
- You need to study hard for the final.

All of your course grades will be posted on Blackboard throughout the semester. You may check your grade at anytime on myCourses (Desire2Learn; OnLine Support: http://d2l.sfasu.edu).

**COURSE REQUIREMENTS:** There will be four semester exams (100 pts each), and a comprehensive Final (100 points) cumulative with emphasis on the material covered since the last exam. The regular exams will be given from 6 pm - 8.00 p.m. These exams will consist of problems that must be set up and solved, discussion questions, and/or multiple choice, true/false, math problems, fill-in-blanks or essay type questions. All Exams will be done via D2L. Students have one week from the day any graded item is returned to notify professor of a possible grading error or ask questions about the grade of an item. After one week no points will be returned. The professor has the prerogative of also re-grading the entire item. Multiple choice questions will have no partial credit. In addition, homework problems will be assigned. Continuous weekly quizzes will be given in class. These quizzes will test your understanding of material covered in class.

**GRADING POLICY:**

4-hour exams (100 pts per test) cumulative with emphasis on the material covered since last. These exams will be given on Wednesday September 16 (CHE 1305 - 700)/Thursday17 (CHE 1305-701 and Wednesday October 21(CHE 1305-700) and Thursday October 22 (CHE 1305-701), November 18/19, and December 2 & 3 (Comprehensive Make-up Exam). All Exams will be given via D2L (Exams 1, 2, 3, 4, comprehensive makeup, and Exam 5 (Final)).

Exams will total 100 points (100 pts per test). The Exams will be completed via Internet with due dates assigned. Any computer capable of connecting to the internet can access the homework system

**Final Exam** – comprehensive exam worth 200 pts. Final Exam will be given on Wednesday and Thursday December 9 & 10.

**Homework** – Homework will total 100 points (#points correct*100/ total points available).

Online homeworks will be assigned and due dates posted on MasteringChemistry.com Website. The due dates will be announced in class. Homework will **not be graded after the due date** without legitimate documentation (NO EXCEPTIONS).

**Strategies for Succeeding in Chemistry 111:**

1. Attend every lecture because the topics covered in this course build on each other.
2. Prior to class, read the chapter which will be covered in lecture.
3. Review your lecture notes after each class. Correct obvious errors and note topics which require further study or clarification.
4. Work on homework problems until you can solve them without any help or guidance.
5. Spend the necessary amount of time studying chemistry. The rule of thumb for succeeding in Chemistry is three hours of
study for every hour of lecture. This means that you should plan to study Chemistry for a **minimum** of nine hours each week.

6. Don’t procrastinate. The concepts take time to sink in, and you may have to practice these exercises over a period of many days in order to master the necessary skills.

7. Form a study group. This is your first avenue for getting help. Be able to communicate with each other on short notice, not just before class.

**METHOD OF EVALUATION:**
The final grade will be based upon percentage of points obtained in the following:

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Points</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>630−700</td>
<td>90.0−100.0 %</td>
</tr>
<tr>
<td>B</td>
<td>560−629.9</td>
<td>80.0−89.9 %</td>
</tr>
<tr>
<td>C</td>
<td>490−559.99</td>
<td>70.0−79.9 %</td>
</tr>
<tr>
<td>D</td>
<td>420−489.9</td>
<td>60.0−69.9 %</td>
</tr>
<tr>
<td>F</td>
<td>&lt;420</td>
<td>0.0−59.9 %</td>
</tr>
</tbody>
</table>

Four exams will be given during the scheduled afternoon time periods. No one coming in late may start an exam after the first person has left. Each exam will be worth 100 points. The final ACS exam will be comprehensive and will be worth 100 points.

<table>
<thead>
<tr>
<th>Day/Date</th>
<th>Approximate Material Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 16 (Wedn.)/ Sept. 17 (Thur.)</td>
<td>Chaps. 1-4</td>
</tr>
<tr>
<td>October 21 (Wedn.)/ Octob 22 Thur.</td>
<td>Chaps. 5, 6, 7, 8, 9, 10, 15 &amp; 16</td>
</tr>
<tr>
<td>Nov. 18 (Wedn.)/ Nov. 19 (Thur.)</td>
<td>Ch.11, Ch.13, 15</td>
</tr>
<tr>
<td>Dec. 2 (Mon.)/ Dec. 3 (Thur.)</td>
<td>Ch.14, Ch.17</td>
</tr>
<tr>
<td>CHE 1305-700: Dec. 2 (W 8.00 am. - 10.00 a.m.)</td>
<td>Comprehensive</td>
</tr>
</tbody>
</table>

- **The Exam schedule is Tentative.**
- **Comprehensive make-up exam** will be given on **Wednesday/Thursday, December 2 & 3** (6 p.m. - 8.00 p.m.)

**Please note:** In order for you to have enough time to complete exams, all exams (except for the final) will be given from 11.00-1.00 p.m. **It is your responsibility to make any needed adjustments in your class/work/extracurricular schedule to accommodate for this.** Please keep in mind that 1.5-2 hours are allotted for the exams for a reason. You should expect exams that are thorough and challenging. Plan to stay for the entire two-hour period.

**MAKE-UP POLICY:** A comprehensive **make-up exam** will be given on **Wednesday; Dec. 2/3, 30, 6-8 pm.** Everyone is allowed to take the make-up test. If one does well in the make-up test, the make-up test will replace any one of the lowest grades of the **first 4 exams.**

**ATTENDANCE POLICY:**
(1) Attendance of class is mandatory. **Nine** (9) or more absences will result in an "F" for the course.
(2) **Ten** points will be added to the point total for anyone with **zero** absences.
(3) **Six** points will be added to anyone with only **one** absence
(4) **Three** points will be added to anyone with only **two** absences
(5) For purposes of the bonus attendance points there is **NO distinction** between excused and unexcused absences

**Definition of Academic Dishonesty**
Academic dishonesty includes both cheating and plagiarism. Cheating includes but is not limited to (1) using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class; (2) the falsification or invention of any information, including citations, on an assigned exercise; and/or (3) helping or attempting to help another in an act of cheating or plagiarism. Plagiarism is presenting the words or ideas of another person as if they were your own. Examples of plagiarism are (1) submitting an assignment as if it were one’s own work when, in fact, it is at least partly the work of another; (2) submitting a work that has been purchased or otherwise obtained from an Internet source or another source; and (3) incorporating the words or ideas of an author into one's paper without giving the author due credit.

Any student found cheating will be subject to the penalties as stated in the Student Code of Conduct handbook; including but not limited to a score of zero on exam or laboratory experiment, expulsion from the class or expulsion from the University.
Please read the complete policy at http://www.sfasu.edu/policies/academic_integrity.asp

**Semester Withdrawals:** Last day to drop/withdraw from the course without obtaining WP or WF grade is June 27.

**Withheld Grades Semester Grades Policy (A-54):** Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average.

The circumstances precipitating the request must have occurred after the last day in which a student could withdraw from a course. Students requesting a WH must be passing the course with a minimum projected grade of C.

**Academic Disabilities Policy:** Students with Disabilities – To obtain disability-related accommodations and/or auxiliary aids, students with disabilities must contact the Office of Disability Services, Human Services Building, Room 325, 468-3004/468-1004 (TDD) as early as possible in the semester. Once verified, DS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided.

**Classroom Behavior Policy:** To ensure a classroom environment conducive to learning, any forms of classroom disruptions will not be tolerated (examples but not limited to – talking, use of cell phones/beepers, sleeping, reading other material, eating/drinking). Students who violate these rules will be asked to leave. Repeat offenders will be subject to disciplinary action in accordance with University policies as described in the Code of Student Conduct.

**Note:** If you are taking this course in preparation for the TEKS (to become a teacher) you need to contact the Chair, Dr. Janusa.

**Calculation of Your Final Grade**

You can calculate your grade in any one of the two ways: (a) As a % of average, or (b) By summing all total points, as shown below;

**(A) % Final Grade (This assumes 16 homeworks (each worth 100 points))**

\[
\text{Final Average} = \frac{\text{Total of 400 pts in 4 exams}}{600} + \frac{50 \times \text{Total Quizzes}}{70} + \frac{50 \times \text{Total Homeworks}}{70} + \text{Final Exam (100 pts)} \times 100\%
\]

**(B) Point Totals:**

\[
\text{Final Average} = \text{Total pts in 4 Exams} + \frac{100 \times \text{Total Homeworks}}{1600} + \text{Final Exam (200 pts)}
\]