MTH 127. Introduction to Mathematics for Elementary Teachers—Syllabus

Thomas W. Judson, Professor
Department of Mathematics and Statistics

Course Description
Elementary concepts of sets, numeration systems, number theory, and properties of the natural numbers, integers, rational, and real number systems with an emphasis on problem solving and critical thinking. For a more detailed course description, Student Learning Outcomes, and Exemplary Educational Objectives, go to http://www2.sfasu.edu/math/docs/syllabi/MTH127Syllabus.pdf

Course Prerequisites
A minimum math score of 230 on THEA, 19 on ACT, 500 on SAT or a C or better in MTH 099. The Department of Mathematics and Statistics strongly recommends a minimum math score of 270 on THEA, 21 on ACT, 500 on SAT or a C or better in MTH 099 before taking any credit-level mathematics course.

Course Time and Meeting Place
- MTH 127 Section 003 meets in Math 204 at 1–2:15 MW.
- MTH 127 Section 004 meets in Math 204 at 2:30–3:45 MW.
- MTH 127 Section 005 meets in Math 205 at 3:30–4:45 TuTh.

Instructor
- Thomas W. Judson, Professor
 Department of Mathematics and Statistics
 Office: Math 316
 TEL: (936) 468–1704
 Email: judsontw @ sfasu.edu
 Office Hours:
 - Monday: 12–1 PM (in Math 316); 5–6 PM (in the AARC)
 - Tuesday: 2:30–3:30 PM (in Math 316)
 - Wednesday: 12–1 PM (in Math 316)
 - Thursday: 2:30–3:30 (in Math 316)
 - Additional office hours by appointment

Course Goals
- To understand the mathematics essential to successful teaching in the elementary school classroom.
- To acquire a foundation in numeration systems, number theory and properties of the natural numbers, integers, rational, and the real number system.
- To gain skill in problem solving and critical thinking.

Student Learning Outcomes (SLO):
At the end of MTH 127, a student who has studied and learned the material should be able to:
1. Solve a variety of problems using multiple problem-solving techniques. [CO 1,3]
2. Demonstrate understanding of core concepts underlying standard and non-standard algorithmic procedures for performing operations on subsets of real numbers. [CO 1,3]
3. Communicate his/her knowledge effectively in multiple formats—verbally, concretely, and in writing. [CO 2]
4. Define, identify, and use the fundamental properties of real number operations. [CO 3]
5. Provide logical justification of mathematical thinking. [CO 1]
6. Use mathematical language and notation appropriately to communicate ideas. [CO 2]

Program Learning Outcomes
There are no specific program learning outcomes for this major addressed in this course. It is a general education core curriculum course and/or a service course.

Textbook

http://faculty.sfasu.edu/judsontw/math127/syllabus.html
Calculators

Although no calculator is required for MTH 127, a simple four-function calculator might be useful. We encourage you to bring your calculator to class with you everyday. However, you should not rely on computers and calculators to such an extent that they keep you from developing your own skills. Technology should be used as an aid, but without a good understanding of the underlying mathematical concepts, the calculator will quite happily mislead you without your even knowing it. In general, technology is a good thing, but as with everything, sometimes too much of a good thing can lead to problems. For this reason, we will not allow calculators to be used on exams. *You may not use your cellphone or your iPod in class for a calculator.*

Grading and Exams

The will be three 75 minute exams and a comprehensive two and a half hour final exam. Your course grade will be determined as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Date</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>Class assignment due according to dates on the MTH 127 Calendar.</td>
<td>20%</td>
</tr>
<tr>
<td>Exam I</td>
<td>Exam dates are on the MTH 127 Calendar.</td>
<td>20%</td>
</tr>
<tr>
<td>Exam II</td>
<td>Exam dates are on the MTH 127 Calendar.</td>
<td>20%</td>
</tr>
<tr>
<td>Exam III</td>
<td>Exam dates are on the MTH 127 Calendar.</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Tuesday, December 10 at 6:30–9:00 PM, Place TBA</td>
<td>20%</td>
</tr>
</tbody>
</table>

Semester numerical scores will be converted into letter grades according to the following method.

<table>
<thead>
<tr>
<th>Range of numerical values</th>
<th>Corresponding Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>90–100</td>
<td>A</td>
</tr>
<tr>
<td>80–89</td>
<td>B</td>
</tr>
<tr>
<td>70–79</td>
<td>C</td>
</tr>
<tr>
<td>60–69</td>
<td>D</td>
</tr>
<tr>
<td>0–59</td>
<td>E</td>
</tr>
</tbody>
</table>

When we calculate your final grade at the end of the course, we will calculate a score on a 0–100 point scale using the scores that you have obtained during the course, and using the grade breakdown given above. Your course grade will then be obtained using this table. In the event of a fractional score, we will always round up to the nearest integer. *There is no provision for extra credit in this course.*

Exam corrections. You rework any exam questions for which you lost credit. Errors should also be classified according to the instructor’s criteria. These assignments will be returned to you for editing until they are completely correct. Credit for this assignment will not be awarded until all errors are completely corrected. These assignments are classified as "homework" and will not alter exam grades.

Resurrection Policy. If you score *70% or better* on the final exam and this higher than your lowest midterm exam, we will replace your lowest midterm grade with your final exam grade. The resurrection policy does not apply to your homework grade.

Important Information about the Math 127 Final Exam
The final exam for MTH 127 is on Tuesday, December 10, 2019 at 6:30–9:00 PM in a location to be announced. Students having another exam at this time may take the MTH 127 final at an earlier time during the final examination week.

Exam Policy
Exams are scheduled far in advance, and it is impossible to move the time or date. However, in rare cases where it is impossible for an individual to take the exam at the scheduled time, we will work with you to make other arrangements. Exceptions for taking the exam out of sequence are the following:

1. A medical excuse. Please provide proper documentation according to university rules.
2. A University sponsored event such as an athletic tournament, a play, or a musical performance. Your coach or director must contact us in advance. Athletic practices and rehearsals do not fall into this category.
3. A religious holiday. Please send a short email explaining the situation.
4. Extreme hardship such as a family emergency. Please have the proper university office us.

The above are the only allowable excuses for taking the exam before the scheduled time. Under no circumstances do we give late exams. Since we can only accommodate a limited number of students taking the exam at an earlier time, please make sure that you fall into one of the above categories before you contact us. If you miss an exam due to illness or a family emergency, you will not be penalized. We will assign you a grade based on the rest of your coursework. If you have a conflict with the final exam, please contact your MTH 127 instructor as soon as possible. Students with an accommodation from Disability Services may take the final exam at an earlier time during finals week. All other out-of-sequence final exams must be approved by the Dean of the College of Science and Mathematics.

Calculators cannot be used on exams.

Cell phone use is not permitted in or out of the classroom during all exams. If you bring your cell phone to the exam venue, please remember to turn it off. Violation of this policy will be considered as academic dishonesty and dealt with accordingly. You will not be permitted to use your cell phone as a calculator, so plan ahead.

General Education Core Curriculum

The Texas Higher Education Coordinating Board has identified six core learning objectives: Critical Thinking Skills, Communication Skills, Empirical and Quantitative Skills, Teamwork, Personal Responsibility, and Social Responsibility. SFA is committed to the improvement of its general education core curriculum by regular assessment of student performance on these six objectives.

By enrolling in Introduction to MTH 127: Mathematics for Elementary Teachers you are also enrolling in a Core Curriculum Course that fulfills the Communication Skills requirement. You will see this course on your D2L list.

At one point during the semester, you will receive an assignment that fulfills both the requirements of this course and the needs of Stephen F. Austin State University’s Core Curriculum Assessment Plan with the Texas Higher Education Coordinating Board. When you complete this one assignment, you need to upload the assignment to both your standard course dropbox determined by your Instructor and the “Core Curriculum” dropbox. The Core Curriculum dropbox will be identified by the Objective for which work is being collected. (Examples: Critical Thinking, Teamwork, Social Responsibility Empirical & Quantitative Skills, Personal Responsibility, Communication Skills-Written, Communication Skills-Written & Visual, and Communication Skills- Oral & Visual.) Please note that this only applies to the approved assignment. All other assignments should be submitted according to regular class operations. If you have any questions, please see your Instructor or the Office of Student Learning and Institutional Assessment.

When you complete the assignment mentioned above, you will upload the assignment to both the MTH 127: Mathematics for Elementary Teachers dropbox and the Communication Skills dropbox.

Please note that this only applies to the specific assignment listed in the matrix below. All other assignments should be submitted according to regular class operations.

If you have any questions, please see your instructor or contact the Institutional Effectiveness Office at (936) 468–1130.

The chart below indicates the core objectives addressed by this course, the assignment(s) that will be used to assess the objectives in this course and uploaded to the D2L Communication Skills dropbox this semester, and the date the assignment(s) should be uploaded to the D2L Communication Skills dropbox. Not every assignment will be submitted for core assessment every semester. Your instructor will notify you which assignment(s) must be submitted for assessment in the Communication Skills dropbox.

<table>
<thead>
<tr>
<th>Core Objective</th>
<th>Definition</th>
<th>Course Assignment Title</th>
<th>Date Due in D2L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Thinking Skills</td>
<td>To include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information.</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Communication</td>
<td>To include effective development,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skills</td>
<td>interpretation and expression of ideas through written, oral, and visual communication.</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Empirical and Quantitative Skills</td>
<td>To include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Homework and Quizzes

Homework assignments from the textbook can be found on the calendar page (http://faculty.sfasu.edu/judsontw/math127/calendar.html). In addition, online homework is required using WeBWorK at https://webwork.sfasu.edu/webwork2/MTH127-Fall18/. Instructions for getting started in WeBWorK can be found at http://faculty.sfasu.edu/judsontw/math127/127-Webwork-Instructions.pdf.

Homework will also be assigned from our textbook and graded. Your daily average is based on your grades from WeBWorK homework, homework from the textbook, and any other daily grades that are assigned for a grade. **Late homework will not be accepted.**

Making Your Homework Easy to Read and Easy to Grade

- Make sure your handwriting is legible.
- Homework with multiple pages should be stapled in the upper left-hand corner.
- In the upper right-hand corner you should write (in this order):
 - Your name
 - MTH 127-003, MTH 127-004, or MTH 127-005
 - The homework assignment
 - The due date of the homework
- Problems should be clearly labeled and numbered on the left side of the page. There should also be a visible separation between problems. *Don't forget to staple your homework together if you are submitting several pages.*
- You should leave the entire left margin blank so that the grader can use this space for scoring and comments.
- To ensure that each problem is graded, problems and solutions should be written in the order that they are assigned.
- It is good practice to first work out the solutions to homework problems on scratch paper, and then to neatly write up your solutions. This will help you turn in a clean finished product.
- You should write up your solutions by yourself. You should always acknowledge any help received at the top of the assignment or in the right-hand margin.

The Classroom

Any questions you ask in class will likely be ones that other students will want answered as well, so get over any hesitation you might have and ask questions as the material is presented. You will not be penalized for doing this, no matter how trivial or simple you think your questions might seem. Remember, the class is being held for you to learn the material, not just to give you a time to copy notes off of a blackboard, so be sure to get help when you need it and stay involved in your class.

Getting Help with MTH 127

- Individual and group help is available at the Academic Assistance and Resource Center (AARC), which is located on the first floor of the Steen Library (https://library.sfasu.edu/aarc/). You can find information on power hours, learning teams, and one-on-one tutoring here as well as the dates for open enrollment.
- Remember to take advantage of office hours. You don’t have to make an appointment for office hours—just drop in.

Core Objectives (CO)

1. Critical Thinking [CO 1]: to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information.
2. Communication Skills [CO 2]: to include effective development, interpretation and expression of ideas through written, oral and visual communication.
3. Empirical and Quantitative Skills [CO 3]: to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.

Course Outline

- Techniques of problem solving and estimation skills. Approximate time spent: 15%

Explicit instruction in Critical Thinking, Communication and Empirical and Quantitative Reasoning is in addition to implicit instruction, modeling and practice that occur daily in the discussion of numbers and operations. This explicit instruction includes explanation of solving mathematical problems by thinking critically, communicating logically ordered solutions with complete and correct notation, and applying empirical or quantitative skills as appropriate to the problem.

The following topics will be threaded throughout the course in order to develop the habits of mind necessary to be successful in mathematics:

- Introduce Polya’s Problem Solving Process: Understand the Problem, Devise a Plan, Carry Out Plan, Look Back
- Explore Basic Problem Solving Strategies
- Explore Patterns in Language and Numbers
- Develop Estimation Skills with Mental Arithmetic
- Investigate temperature as a form of measurement
- Whole Numbers and Numeration: Concepts and Algorithms. Approximate time spent: 25%
 - Define the Set of Whole Numbers
 - Model Whole Number Operations using a Variety of Methods
 - Verify Properties of Operations: Commutative, Associative, Distributive Property of Multiplication over Addition, Multiplication by Zero
 - Explore Place Value in the Base-10 System
 - Develop and Apply Algorithms for Whole Number Operations
 - Develop Definition and Properties for Whole Number Exponents
- Number Theory: An Introduction. Approximate time spent: 10%
 - Define and Explore Primes and Composites
 - Explore Basic Divisibility Properties of Sums and Products
 - Define the GCD and LCM and Use Algorithms for Finding Each
- Integers: Concepts and Algorithms. Approximate time spent: 25%
 - Model Integer Operations Using A Variety Of Methods
 - Investigate Extensions of Whole Number Operations and their Properties: Commutative, Associative, Distributive Property of Multiplication over Addition, Multiplication by Zero
- Real Numbers: Concepts and Algorithms. Approximate time spent: 25%
 - Investigate Practical Uses for Fractions
 - Explore Connections between Fractions, Rational Numbers, Decimals, and Percents
 - Investigate Order And Operations in Decimal Form
 - Illustrate the Pythagorean Theorem
 - Develop Proportional Thinking to Include Ratio and Proportion
- Explicit instruction in Critical Thinking, Communication and Empirical and Quantitative Reasoning is in addition to implicit instruction, modeling and practice that occur daily in the discussion of numbers and operations. This explicit instruction includes explanation of solving mathematical problems by thinking critically, communicating logically ordered solutions with complete and correct notation, and applying empirical or quantitative skills as appropriate to the problem.

Credit Hours

Per SFA policy 5.4, your schedule should reflect that there is (1) an amount of student work per credit hour that reasonably approximates not less than one hour of class or direct faculty instruction and two hours of out-of-class student work per week for fifteen weeks over a long semester, or the equivalent amount of work over a different amount of time; or (2) at least an equivalent amount of work as outlined in item 1 above for other academic activities as established by the institution including laboratory work, internships, practica, studio work, and other academic work leading to the award of credit hours.

Add/Drop Policy

The Add/Drop Policy can be found at http://www.sfasu.edu/policies/add_drop.asp

Attendance Policy

Regular attendance is expected in MTH 127. Attendance and Excused Absences Policy can be found at http://www.sfasu.edu/policies/class_attendance_excused_abs.asp

Withheld Grades Semester Grades Policy (A-54)

Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average.

The circumstances precipitating the request must have occurred after the last day in which a student could withdraw from a course. Students requesting a WH must be passing the course with a minimum projected grade of C.

Students with Disabilities

To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices/

Acceptable Student Behavior

Classroom behavior should not interfere with the instructor’s ability to conduct the class or the ability of other students to learn from the instructional program (see the Student Conduct Code, policy D-34.1). Unacceptable or disruptive behavior will not be tolerated. Students who disrupt the learning environment may be asked to leave class and may be subject to judicial, academic or other penalties. This prohibition applies to all instructional forums, including electronic, classroom, labs, discussion groups, held trips, etc. The instructor shall have full discretion over what behavior is appropriate/inappropriate in the classroom. Students who do not attend class regularly or who perform poorly on class projects/exams may be referred to the Early Alert Program. This program provides students with recommendations for resources or other assistance that is available to help SFA students succeed.

You are off the grid in MTH 127. You may use your tablet or notebook computer to access the textbook or SageMathCloud in class; otherwise, consider yourself off the grid when you are in MTH 127. Please be respectful of your fellow students and your instructor. Cell phone use and texting are not allowed in class. Remember to turn your cell phone off and place it in your bag or backpack before entering the classroom. Any cell phone that is visible will be collected and returned to you at the end of class. Exceptions to this rule include volunteer firemen, physicians on-call, those who are on the shortlist to receive an organ transplant, etc.
Academic Integrity (A-9.1)

Academic integrity is a responsibility of all university faculty and students. Faculty members promote academic integrity in multiple ways including instruction on the components of academic honesty, as well as abiding by university policy on penalties for cheating and plagiarism.

Definition of Academic Dishonesty. Academic dishonesty includes both cheating and plagiarism. Cheating includes but is not limited to (1) using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class; (2) the falsification or invention of any information, including citations, on an assigned exercise; and/or (3) helping or attempting to help another in an act of cheating or plagiarism. Plagiarism is presenting the words or ideas of another person as if they were your own. Examples of plagiarism are (1) submitting an assignment as if it were one’s own work when, in fact, it is at least partly the work of another; (2) submitting a work that has been purchased or otherwise obtained from an Internet source or another source; and (3) incorporating the words or ideas of an author into one’s paper without giving the author due credit.

Any acts of academic dishonesty will be dealt with according to University policy. Penalties for academic dishonesty may result in a failing grade for the assignment, failing the course, or even dismissal from the university.

Please read the complete Academic Integrity Policy at http://www.sfasu.edu/policies/academic_integrity.asp

Last modified: August 23, 2019
MTH 127 Course Calendar for MW Classes (Sections 003 and 004)

Week 1
- **Monday** 8/26/19: Course Orientation
 - §1.1. Counting Numbers.
- **Wednesday** 8/28/19:
 - §1.2. Decimals.
 - §1.3. Reasoning to Compare Numbers in Base Ten
- **Monday** 9/2/19:
 - §1.4. Reasoning about Rounding
 - §2.1. Solving Numbers and Explaining Solutions
- **Wednesday** 9/4/19:
 - §2.2. Defining and Reasoning about Fractions
 - Unit Amount Problem (Exercises 5, 17; pp. 57–59)
 - Arithmetic Pre-Test
- **Monday** 9/9/19:
 - §2.3. Reasoning about Equivalent Fractions
 - Ken problem (Exercise 18; p. 68)
- **Wednesday** 9/11/19:
 - §2.4. Reasoning to Compare Fractions
- **Monday** 9/16/19:
 - Exam I—Chapters 1 and 2
- **Wednesday** 9/18/19:
 - §3.1. Interpretations of Addition and Subtraction
- **Monday** 9/23/19:
 - §3.2. The Commutative and Associative Properties of Addition, Mental Math and Single-Digit Facts
 - Tomaslav Problem (Exercise 4; p. 112)
- **Wednesday** 9/25/19:
 - §3.3. Why the Standard Algorithms for Adding and Subtracting Numbers in the Base Ten System Work
- **Monday** 9/30/19:
 - §3.4. Reasoning about Fraction Addition and Subtraction
 - Denise Problem (Exercise 11; p. 132)
- **Wednesday** 10/2/19:
 - §4.1. Interpretations of Multiplication
 - §4.2. Why Multiplying by 10 is Special in Base Ten
- **Monday** 10/7/19:
 - §4.3. The Commutative and Associative Properties of Multiplication, Area of Rectangles and Volume of Boxes
- **Wednesday** 10/9/19:
 - §4.4. The Distributive Property
 - Ted Problem (Exercise 9; p. 174)
- **Monday** 10/14/19:
 - Exam II—Chapters 3 and 4.1–4.5
- **Wednesday** 10/16/19:
 - §4.6. Why the Standard Algorithm for Multiplying Whole Numbers Works

MTH 127 Course Calendar for TuTh Classes (Sections 005)

Week 1
- **Monday** 8/26/19: Course Orientation
 - §1.1. Counting Numbers.
- **Wednesday** 8/28/19:
 - §1.2. Decimals.
 - §1.3. Reasoning to Compare Numbers in Base Ten
- **Monday** 9/2/19:
 - §1.4. Reasoning about Rounding
 - §2.1. Solving Numbers and Explaining Solutions
- **Wednesday** 9/4/19:
 - §2.2. Defining and Reasoning about Fractions
 - Unit Amount Problem (Exercises 5, 17; pp. 57–59)
 - Arithmetic Pre-Test
- **Monday** 9/9/19:
 - §2.3. Reasoning about Equivalent Fractions
 - Ken problem (Exercise 18; p. 68)
- **Wednesday** 9/11/19:
 - §2.4. Reasoning to Compare Fractions
- **Monday** 9/16/19:
 - Exam I—Chapters 1 and 2
- **Wednesday** 9/18/19:
 - §3.1. Interpretations of Addition and Subtraction
- **Monday** 9/23/19:
 - §3.2. The Commutative and Associative Properties of Addition, Mental Math and Single-Digit Facts
 - Tomaslav Problem (Exercise 4; p. 112)
- **Wednesday** 9/25/19:
 - §3.3. Why the Standard Algorithms for Adding and Subtracting Numbers in the Base Ten System Work
- **Monday** 9/30/19:
 - §3.4. Reasoning about Fraction Addition and Subtraction
 - Denise Problem (Exercise 11; p. 132)
- **Wednesday** 10/2/19:
 - §4.1. Interpretations of Multiplication
 - §4.2. Why Multiplying by 10 is Special in Base Ten
- **Monday** 10/7/19:
 - §4.3. The Commutative and Associative Properties of Multiplication, Area of Rectangles and Volume of Boxes
- **Wednesday** 10/9/19:
 - §4.4. The Distributive Property
 - Ted Problem (Exercise 9; p. 174)
- **Monday** 10/14/19:
 - Exam II—Chapters 3 and 4.1–4.5
- **Wednesday** 10/16/19:
 - §4.6. Why the Standard Algorithm for Multiplying Whole Numbers Works
9
Monday
10/21/19
§5.1. Making Senses of Fraction Multiplication
5A, 5C (only CA-89)

Wednesday
10/23/19
§5.1. Making Senses of Fraction Multiplication (continued)
5D, 5E

Monday
10/28/19
§6.1. Interpretations of Division
6A, 6B, 6D

Wednesday
10/30/19
§6.2. Division and Fractions and Division with Remainder
Improper Fraction Problem (Exercise 9; p. 238)
6E, 6G

Monday
11/4/19
§6.3. Why Division Algorithms Work
6I, 6J

Wednesday
11/6/19
§6.4. Fraction Division from the "How Many Groups" Perspective
6M

Monday
11/11/19
§6.4. Fraction Division from the "How Many Groups" Perspective (continued)
6M (continued)

Wednesday
11/13/19
Exam III—Section 4.6, 5.1, 6.1–6.4

Monday
11/18/19
§6.5. Fraction Division from the "How Many Units in One Group" Perspective
6P, 6Q

Wednesday
11/20/19
§8.1. Factors and Multiples
8A, 8B, 8D, 8E

Monday
11/25/19
Thanksgiving Recess
No Class

Wednesday
11/27/19
Thanksgiving Recess
No Class

Monday
12/2/19
§8.3. Divisibility Tests
8G, 8H, 8I, 8J

Wednesday
12/4/19
§8.5. Greatest Common Factor and Least Common Multiple
8M

Tuesday
12/10/19
Final Exam at 6:30–9:00 PM. Place TBA

MTH 127 Course Calendar for TuTh Classes (Section 005)

Week 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| 13| 14| 15| 16

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Activity (due on this date)</th>
<th>Section, Page, Problem Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tuesday</td>
<td>Course Orientation</td>
<td>1C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/27/19</td>
<td>§1.1. Counting Numbers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>§ 1.2. Decimals.</td>
<td>1E, 1F, 1I (mod)</td>
<td>1C #5–7</td>
</tr>
<tr>
<td></td>
<td>8/29/19</td>
<td>§1.3. Reasoning to Compare Numbers in Base Ten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tuesday</td>
<td>§1.4. Reasoning about Rounding</td>
<td>1N, 1O</td>
<td>1G, 1K #1, 3, 4</td>
</tr>
<tr>
<td></td>
<td>9/3/19</td>
<td>§2.1. Solving Numbers and Explaining Solutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>§2.2. Defining and Reasoning about Fractions Unit Amount Problem (Exercises 5, 17; pp. 57–59) Arithmetic Pre-Test</td>
<td>2A, 2B, 2C, 2D</td>
<td>1M, 2D (drawings only)</td>
</tr>
<tr>
<td></td>
<td>9/5/19</td>
<td>§2.3. Reasoning about Equivalent Fractions Ken problem (Exercise 18; p. 68)</td>
<td>2L, 2K, 2L</td>
<td>2C #4–7, 2G</td>
</tr>
<tr>
<td>3</td>
<td>Tuesday</td>
<td>§2.4. Reasoning to Compare Fractions</td>
<td>2O, 2P, 2Q</td>
<td>2L, 2M Writing Assignment #1</td>
</tr>
<tr>
<td></td>
<td>9/10/19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>§3.1. Interpretations of Addition and Subtraction Strip diagram, 3B</td>
<td>3B</td>
<td>2.4. Exercises 1, 7; p. 77</td>
</tr>
<tr>
<td>4</td>
<td>Tuesday</td>
<td>§3.2. The Commutative and Associative Properties of Addition, Mental Math</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/17/19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>§3.3. Mental Math</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/19/19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://faculty.sfasu.edu/judsonlw/math127/calendar.html
<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/24/19</td>
<td>Tuesday</td>
<td>and Single-Digit Facts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tomaslav Problem (Exercise 4; p. 112)</td>
</tr>
<tr>
<td>9/26/19</td>
<td>Thursday</td>
<td>§3.3. Why the Standard Algorithms for Adding and Subtracting Numbers in the Base Ten System Work</td>
</tr>
<tr>
<td>10/1/19</td>
<td>Tuesday</td>
<td>§3.4. Reasoning about Fraction Addition and Subtraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Denise Problem (Exercise 11; p. 132)</td>
</tr>
<tr>
<td>10/3/19</td>
<td>Thursday</td>
<td>§4.1. Interpretations of Multiplication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§4.2. Why Multiplying by 10 is Special in Base Ten</td>
</tr>
<tr>
<td>10/8/19</td>
<td>Tuesday</td>
<td>§4.3. The Commutative and Associative Properties of Multiplication, Area of Rectangles and Volume of Boxes</td>
</tr>
<tr>
<td>10/10/19</td>
<td>Thursday</td>
<td>§4.4. The Distributive Property</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ted Problem (Exercise 9; p. 174)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§4.5. Properties of Arithmetic, Mental Math, and Single-Digit Multiplication Facts</td>
</tr>
<tr>
<td>10/15/19</td>
<td>Tuesday</td>
<td>§4.6. Why the Standard Algorithm for Multiplying Whole Numbers Works</td>
</tr>
<tr>
<td>10/17/19</td>
<td>Thursday</td>
<td>§4.6. Exercise 6; p. 174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§4.5. Exercise 4; p. 183</td>
</tr>
<tr>
<td>10/22/19</td>
<td>Tuesday</td>
<td>§5.1. Making Senses of Fraction Multiplication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§5.1. Making Senses of Fraction Multiplication (continued)</td>
</tr>
<tr>
<td>10/24/19</td>
<td>Thursday</td>
<td>§6.1. Interpretations of Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§6.2. Division and Fractions and Division with Remainder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improper Fraction Problem (Exercise 9; p. 238)</td>
</tr>
<tr>
<td>10/29/19</td>
<td>Tuesday</td>
<td>§6.3. Why Division Algorithms Work</td>
</tr>
<tr>
<td>10/31/19</td>
<td>Thursday</td>
<td>§6.4. Fraction Division from the "How Many Groups" Perspective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§6.4. Exercise 4; pp. 259–260</td>
</tr>
<tr>
<td>11/5/19</td>
<td>Tuesday</td>
<td>§6.5. Fraction Division from the "How Many Units in One Group" Perspective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§6.5. Exercise 7; pp. 259–260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing Assignment #3</td>
</tr>
<tr>
<td>11/7/19</td>
<td>Thursday</td>
<td>§6.4. Fraction Division from the "How Many Groups" Perspective</td>
</tr>
<tr>
<td>11/12/19</td>
<td>Tuesday</td>
<td>§6.4. Fraction Division from the "How Many Groups" Perspective (continued)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§6.4. Exercise 4; pp. 259–260</td>
</tr>
<tr>
<td>11/14/19</td>
<td>Thursday</td>
<td>§8.1. Factors and Multiples</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§8.2. Even and Odd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§8.3. Divisibility Tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§8.4. Prime Numbers</td>
</tr>
<tr>
<td>11/19/19</td>
<td>Tuesday</td>
<td>§8.5. Fraction Division from the "How Many Units in One Group" Perspective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§8.5. Exercise 7; pp. 259–260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing Assignment #3</td>
</tr>
<tr>
<td>11/21/19</td>
<td>Thursday</td>
<td>§8.1. Factors and Multiples</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§8.2. Even and Odd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§8.3. Divisibility Tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§8.4. Prime Numbers</td>
</tr>
<tr>
<td>11/26/19</td>
<td>Tuesday</td>
<td>§8.5. Fraction Division from the "How Many Units in One Group" Perspective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§8.5. Exercise 7; pp. 259–260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing Assignment #3</td>
</tr>
<tr>
<td>11/28/19</td>
<td>Thursday</td>
<td>Thankgiving Recess</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Class</td>
</tr>
<tr>
<td>12/3/19</td>
<td>Tuesday</td>
<td>§8.3. Divisibility Tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§8.4. Prime Numbers</td>
</tr>
<tr>
<td>12/5/19</td>
<td>Thursday</td>
<td>§8.3. Divisibility Tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§8.4. Prime Numbers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§8.5. Exercises 18, 20; pp. 361–362</td>
</tr>
<tr>
<td>12/10/19</td>
<td>Tuesday</td>
<td>§8.4. Exercise 2; pp. 355–356</td>
</tr>
</tbody>
</table>

Last modified: August 23, 2019