I. Course Description:

Teaching Science in EC-6
Examination of the science curriculum for grades EC-6 with emphasis on current practices, trends and research on effective practices for teaching science. Includes investigation of activities and materials appropriate for achieving science objectives.

Course Justification:

ELE 301 “Teaching Science in EC-6” (3 credits) spans 15 weeks. This course meets once a week for two and one-half hours. Students are required to write three lesson plans using the 5E instructional model, including a STEM lesson plan. Students will have required readings and six quizzes will be given throughout the semester. Students work in groups to design and create videos explaining the butterfly life cycle and will design butterfly life cycle activities, including assessment, to implement with local 2nd graders. Students will also create STEM kit lessons to implement with local elementary students. Finally, each semester students participate in a major all-day event where they teach learning stations to elementary students from the local Nacogdoches community and surrounding school districts in an outdoor setting. These activities will average at a minimum four hours preparation work per week outside of the classroom hours. Note: Course fees for this course are $25.00.

Prerequisites: Admission to Educator Preparation; enrolled in ELE 450 (Field Experience II)

Course Rationale: Through the past decade, elementary science education has taken on a "new" direction. Two factors that have given direction to the new elementary education curriculum are: (1) studies of the intellectual development of the young child, and (2) a shift from the lecture-demonstration teaching method to a discovery inquiry learning method. Science is a methodology (process) as well as a body of knowledge (content). Process and content are closely interrelated and both are essential in the science curriculum. It also encompasses a set of personal characteristics (attitudes), which reflects certain behavioral traits of a scientist/problem solver. Coverage of a fixed body of information is not to be regarded as an end in itself, but rather we should focus upon helping children develop an understanding of significant conceptual relationships. Students of science must develop proficiency in collecting, analyzing, synthesizing, and evaluating data, and in making application of this data to new problems. They must also be able to use basic scientific terminology and express simple basic number relationships in mathematical terms. Special consideration should be given to the ways in which scientific theories and laws are discovered, refined and tested. An understanding that theories and laws are regarded as tentative and open to revision should be developed. These ideas furnish this course with its objectives.
Livetext Information: There is an assignment that is related to accountability and accreditation that is required for this course. It is a diagnostic test measuring science content knowledge. The professor will submit this information in Livetext.

II. Intended Learning Outcomes /Goals/Objectives:

Teaching elementary science is a hands-on /minds-on learning opportunity for teacher candidates at SFASU. It is our intent in the College of Education to prepare professional educators who positively impact learning for all students and graduate productive citizens and successful leaders. This science methods course supports the Mission of the College of Education by providing teacher candidates an opportunity to work with EC-6 public school students as we prepare them to become competent, successful, caring and enthusiastic professionals. One of the goals of the College of Education is to provide a variety of teaching venues incorporating the latest technologies to a range of diverse student interests, backgrounds, and aspirations. Another goal is to collaborate with external partners to enhance student’s knowledge, skills, and dispositions, and to influence the ongoing exchange of ideas for mutual benefit. This is accomplished in their field investigations at the SFA Arboretum and the Pineywoods Native Plant Center. The ACEI standards require that teacher candidates have opportunities to work with student and parents, and this also takes place in their field investigations. Public and private school students and their parents participate in these field investigations led by our teacher candidates. Teacher candidates learn to assess, plan, and implement instruction at appropriate levels. They also learn to use on-going assessment to reflect on student learning and teaching strategies to plan for future instruction. The teacher candidates at SFASU become reflective professionals who have experience planning appropriate instruction for diverse student learners. Teacher candidates receive professional development credit and certification from national education organizations as a part of this course. They engage in outreach services, enhance student learning, and promote the reputation of the university through their field experiences.

EC6 Undergraduate Program Learning Outcomes and Student Learning Outcomes:

PLO 1 Candidates know, understand, and use the major concepts, principles, theories, and research related to development of children and young adolescents to construct learning opportunities that support individual students’ development, acquisition of knowledge, and motivation.

- SLO 1.1 Candidates will know and understand the history and nature of science.
 - SLO 1.1.2 Assessment - NSTA Position Statement Discussion Board (SCIENCE 6.2k, 6.3k, 6.7k, 6.10k, 6.3s).

- SLO 1.2 – Candidates will understand how students learn in science and how science interacts with and influences personal and societal decisions.
 - SLO 1.2.1 Assessment –How do children best learn science? Quiz (SCIENCE 4.2k, 7.1k, 7.3k, 7.4k, 7.5k, 7.7k, 7.1s, 7.4s, 7.6s).
 - SLO 1.2.2 Assessment – Wild About Science/BBBB Field Experience: Content Research (SCIENCE 7.1k, 7.3k, 7.4k, 7.5k, 7.7k, 9.1k, 9.2k, 9.4k, 9.5k, 9.6k, 9.7k, 9.11k; PPR 1.18k, 1.18s, 4.15s; InTASC 5p, 9n; Technology 1.3s [ISTE 7c], 3.6s [ISTE 3b], 7.11s [ISTE 3d]).

PLO 2 Candidates know, understand, and demonstrate a high level of competence in their content in the areas of English language arts, mathematics, science, and social studies.

- SLO 2.1 Candidates will understand use of tools, materials, equipment, and technologies and manage classroom, field, and laboratory activities to ensure the safety of all students and ethical care and treatment of organisms and specimens.
 - SLO 2.1.1 Assessment – Creating a Positive Classroom Environment Quiz – (SCIENCE 1.1k, 1.2k, 1.4k, 1.5k, 1.6k, 1.7k, 1.8k, 1.9k, 1.5s, 4.12k, PPR 2.10k, 2.17k, InTASC 3d, 3k, 3o, 10o)
- SLO 2.1.2 Assessment – Making Science Accessible for All Learners Quiz (SCIENCE 2.3s, 4.6k, 4.9k, 4.10k; PPR 2.10k; InTASC 3d, 3k, 10o)
- SLO 2.1.3 Assessment – Science Safety Scavenger Hunt (SCIENCE 1.1k, 1.2k, 1.4k, 1.5k, 1.6k, 1.7k, 1.8k, 1.9k, 1.5s)
- SLO 2.1.4 Assessment – BBBB Field Experience: Implementation/Teaching (SCIENCE 1.3s, 2.2s, 2.3s, 2.9s, 3.5s, 3.6s, 3.7s, 3.8s, 4.1s, 4.2s, 4.3s, 4.4s, 4.5s, 4.6s, 4.8s, 4.9s, 4.12s, 4.13s, 4.14s, 4.15s, 4.16s, 6.3s, 7.1s, 7.4s, 7.6s, 9.1s, 9.2s, 9.3s, 9.7s, 9.8s, 9.9s, 9.16s, 9.17s, 9.18s, 9.21s, 9.22s; PPR 1.18s, Technology 4.11s [ISTE 7b, 7c])

- SLO 2.2 Candidates will know and understand theoretical and practical knowledge of science teaching including the process of scientific inquiry and its role in instruction.
 - SLO 2.2.1 Assessment – Analysis, development and implementation of STEM Kit Lesson (SCIENCE 3.1k, 3.2k, 3.4k, 3.5k, 3.5s, 3.6s, 3.7s, 3.8s; PPR 2.17k; InTASC 3o)
 - SLO 2.2.2 Assessment – Analysis, development and implementation of STEM Kit Lesson (SCIENCE 4.3k, 4.4k, 4.7k, 4.13k, 4.14s, 4.16s; PPR 1.18K; InTASC 5p)
 - SLO 2.2.3 Assessment – Raising Butterflies Activity (SCIENCE 1.5k, 9.1k, 9.2k, 9.4k, 9.5k, 9.6k, 9.7k, 9.11k, 9.1s, 9.2s, 9.3s, 9.7s, 9.8s, 9.9s, 9.16s, 9.17s, 9.18s, 9.21s, 9.22s; Technology 1.3s [ISTE 7c], 3.6s [ISTE 3b], 4.11s [ISTE 7b, 7c], 7.11s [ISTE 3d])
 - SLO 2.2.4 Assessment – Project Learning Tree Certification (SCIENCE 4.3k, 4.7k, 4.8k, 4.9k, 4.10k, 4.12k, 4.13k, 4.6s, 4.16s, 9.1k, 9.2k, 4.9k, 5.6k, 9.7k, 9.11k, 9.1s, 9.2s, 9.3s, 9.7s, 9.8s, 9.9s, 9.16s, 9.17s, 9.18s, 9.21s, 9.22s; PPR 1.18k, 1.18s, 4.14s; InTASC 5p 9n; Technology 7.11s [ISTE 3d])
 - SLO 2.2.5 Assessment - Science Process Skills Assignment (SCIENCE 3.4k, 3.5s, 3.6s, 3.7s, 3.8s, 4.5k, 4.7k, 4.12k, 4.2s, 4.5s)

- SLO 2.3 Candidates will know and understand the TEKS in physical science, life science, earth, and space science and will use unifying concepts and processes that are appropriate science content.
 - SLO 2.3.1 Assessment – What is Inquiry in Science? Instruction Quiz (SCIENCE 4.5k, PPR 1.21k; InTASC 7c)
 - SLO 2.3.2 Assessment – Science Diagnostic Assessment Quiz (SCIENCE 2.5k, 2.6k, 4.3k, 4.7k, 4.9k, 4.10k, 4.12k, 4.13k, 9.1k, 9.2k, 4.9k, 9.5k, 9.6k, 9.7k, 9.11k, 9.1s, 9.2s, 9.3s, 9.7s, 9.8s, 9.9s, 9.16s, 9.17s, 9.18s, 9.21s, 9.22s; PPR 1.18k; InTASC 3o)
 - SLO 2.3.3 Assessment – BBBB Field Experience and STEM Kit lesson: 5E Lesson Plan addressing curriculum standards/alignment, TEKS, learning objective, ELPS and language objective (SCIENCE 1.1s, 4.3k, 4.4k; PPR 1.21k; InTASC 7c)
 - SLO 2.3.4 Assessment - Science Process Skill Assignment (SCIENCE 3.4k, 3.5k, 3.5s, 3.6s, 3.7s, 3.8s, 4.5k, 4.7k, 4.12k, 4.2s, 4.5s)

- SLO 2.4 Candidates will know and use varied and appropriate assessment practices (formative/summative) to monitor science learning.
 - SLO 2.4.1 Assessment – Demonstration of effective questioning techniques in STEM Kit implementation (SCIENCE 3.2k, 3.2s, 3.5s)
 - SLO 2.4.2 Assessment – Assessing Science Learning Quiz (SCIENCE 3.9s, 3.11s, 5.1k, 5.3k, 5.4k, 5.5k, 5.7k, 5.8k, 5.9k, 5.10k, 5.11k; PPR 2.17k; InTASC 3o)
 - SLO 2.4.3 Assessment – BBBB, Butterfly Partners, STEM Kit: Assessment of Instruction (SCIENCE 3.11s, 5.1s, 5.2s, 5.3s, 5.5s, 5.7s, 5.8s)
 - SLO 2.4.4 Assessment – BBBB, Butterfly Partners, STEM Kit : Summative Reflection (SCIENCE 1.3s, 2.2s, 2.3s, 3.5s, 3.6s, 3.8s, 4.1s, 4.2s, 4.6s, 4.12s, 4.13s; PPR 1.21k, 2.10k, 2.17k; InTASC 3d, 3k, 3o, 7c, 10o)

- SLO 2.5 Candidates will demonstrate the ability to use appropriate technology for EC6 science instruction.
 - SLO 2.5.1 Assessment – Technology Tools and Resources for Science Learning Quiz (SCIENCE 2.5k, 2.6k. 3.9s; PPR 1.28k, 2.10k, InTASC 3d, 3k,5l, 8r, 10o; Technology 4.1s [ISTE 1c])
 - SLO 2.5.2 Assessment – The Role of E-Learning in Science Education Discussion Board (SCIENCE 2.6k; PPR 1.28, 2.10k, InTASC 3d, 3k, 5l, 8r, 10o; Technology 4.1s [ISTE 1c])
 - SLO 2.5.3 Assessment - Videos and virtual communication in Butterfly Partners
III. Course Assignments, Activities, Instructional Strategies, use of technology:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Brief explanation</th>
<th>points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic science test (LIVETEXT ASSESSMENT)</td>
<td>Assessment of science content knowledge which will be assessed on the EC6 core subjects state certification exam.</td>
<td>38</td>
</tr>
<tr>
<td>(SCIENCE 2.5k, 2.6k, 4.3k, 4.7k, 4.8k, 4.9k, 4.10k, 4.12k, 4.13k, 9.1k, 9.2k, 9.4k, 9.5k, 9.6k, 9.7k, 9.11k,)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice 5E lesson plan</td>
<td>Create a quality standards-based 5E lesson plan</td>
<td>50</td>
</tr>
<tr>
<td>(SCIENCE 1.1s, 4.3k, 4.4k; PPR 1.21k; InTASC 7c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science journal</td>
<td>Creation of a model science journal</td>
<td>100</td>
</tr>
<tr>
<td>Development of STEM Lesson for STEM Day Event</td>
<td>Plan a STEM kit lesson plan that meets TEKS standards</td>
<td>100</td>
</tr>
<tr>
<td>(SCIENCE 3.1k, 3.2k, 3.4k, 3.5k, 3.5s, 3.6s, 3.7s, 3.8s; PPR 2.17k; InTASC 3o)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SCIENCE 4.3k, 4.4k, 4.7k, 4.13k, 4.14s, 4.16s; PPR 1.18k; InTASC 5p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SCIENCE 1.1s, 4.3k, 4.4k; PPR 1.21k; InTASC 7c) (SCIENCE 3.11s, 5.1s, 5.2s, 5.3s, 5.5s, 5.7s, 5.8s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation of STEM Lesson for STEM day Event</td>
<td>Implement STEM kit with teacher candidate peers</td>
<td>50</td>
</tr>
<tr>
<td>(SCIENCE 3.1k, 3.2k, 3.4k, 3.5k, 3.5s, 3.6s, 3.7s, 3.8s; PPR 2.17k; InTASC 3o)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SCIENCE 4.3k, 4.4k, 4.7k, 4.13k, 4.14s, 4.16s; PPR 1.18k; InTASC 5p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SCIENCE 1.1s, 4.3k, 4.4k; PPR 1.21k; InTASC 7c) (SCIENCE 3.11s, 5.1s, 5.2s, 5.3s, 5.5s, 5.7s, 5.8s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Morning Meeting</td>
<td>Design and implement a science morning meeting with a partner. This will be presented in class.</td>
<td>25</td>
</tr>
<tr>
<td>(SCIENCE 4.2k, 7.1k, 7.3k, 7.4k, 7.5k, 7.7k, 7.1s, 7.4s, 7.6s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild About Science (WAS) Lesson Plan</td>
<td>Write a lesson plan that meets TEKS science standards</td>
<td>100</td>
</tr>
<tr>
<td>*(SCIENCE 7.1k, 7.3k, 7.4k, 7.5k, 7.7k, 9.1k, 9.2k, 9.4k, 9.5k, 9.6k, 9.7k, 9.11k; PPR 1.18k, 1.18s, 4.15s; InTASC 5p, 9n; Technology 1.3s [ISTE 7c], 3.6s [ISTE 3b], 7.11s [ISTE 3d]), (SCIENCE 1.3s, 2.2s, 2.3s, 2.9s, 3.5s, 3.6s, 3.7s, 3.8s, 4.1s, 4.2s, 4.3s, 4.4s, 4.5s, 4.6s, 4.7s, 4.9s, 4.12s, 4.13s, 4.14s, 4.15s, 4.16s, 6.3s, 7.1s, 7.4s, 7.6s, 9.1s, 9.2s, 9.3s, 9.7s, 9.8s, 9.9s, 9.16s, 9.17s, 9.18s, 9.21s, 9.22s; PPR 1.18s, Technology 4.11s [ISTE 7b], (SCIENCE 4.3k, 4.7k, 4.8k, 4.9k, 4.10k, 4.12k, 4.13k, 4.14s, 4.16s, 9.1k, 9.2k, 9.4k, 9.5k, 9.6k, 9.7k, 9.11k, 9.1s, 9.2s, 9.3s, 9.7s, 9.8s, 9.9s, 9.16s, 9.17s, 9.18s, 9.21s, 9.22s; PPR 1.18k, 1.18s, 4.14s; InTASC 5p 9n; Technology 7.11s [ISTE 3d]) (SCIENCE 1.1s, 4.3k, 4.4k; PPR 1.21k; InTASC 7c) (SCIENCE 3.11s, 5.1s, 5.2s, 5.3s, 5.5s, 5.7s, 5.8s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Six quizzes</td>
<td>These quizzes can be given at any time during the semester and will be over material covered in class and assigned readings</td>
<td>6 @ 25 points each 150</td>
</tr>
<tr>
<td>*(SCIENCE 6.2k, 6.3k, 6.7k, 6.10k, 6.3s), (SCIENCE 1.1k, 1.2k, 1.4k, 1.5k, 1.6k, 1.7k, 1.8k, 1.9k, 1.5s, 4.12k, PPR 2.10k, 2.17k; InTASC 3d, 3k, 3o, 7c, 10o), (SCIENCE 2.3s, 4.8k, 4.9k, 4.10k; PPR 2.10k; InTASC 3d, 3k, 10o), (SCIENCE 4.5k, PPR 1.21k; InTASC 7c), (SCIENCE 3.9s, 3.11s, 5.1k, 5.3k, 5.4k, 5.5k, 5.6k, 5.7k, 5.8k, 5.9k, 5.10k, 5.11k; PPR 2.17k; InTASC 3o), (SCIENCE 2.5k, 2.6k, 3.9s; PPR 1.28k, 2.10k; InTASC 3d, 3k,5i, 8r, 10o; Technology 4.1s [ISTE 1c])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-reflection on implementation WAS Science station</td>
<td>These quizzes can be given at any time during the semester and will be over material covered in class and assigned readings</td>
<td>6 @ 25 points each 150</td>
</tr>
<tr>
<td>Professionalism Participation</td>
<td>You are present both mentally and physically for every class and are prepared with required materials.</td>
<td>50</td>
</tr>
<tr>
<td>(SCIENCE 1.3s, 2.2s, 2.3s, 3.5s, 3.6s, 3.8s, 4.1s, 4.2s, 4.6s, 4.12s, 4.13s; PPR 1.21k, 2.10k, 2.17k; InTASC 3d, 3k, 3o, 7c, 10o)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SCIENCE 1.1s, 4.3k, 4.4k; PPR 1.21k; InTASC 7c) (SCIENCE 3.11s, 5.1s, 5.2s, 5.3s, 5.5s, 5.7s, 5.8s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*(SCIENCE 4.5k, PPR 1.21k; InTASC 7c) (SCIENCE 3.9s, 3.11s, 5.1k, 5.3k, 5.4k, 5.5k, 5.6k, 5.7k, 5.8k, 5.9k, 5.10k, 5.11k; PPR 2.17k; InTASC 3o) (SCIENCE 2.5k, 2.6k, 3.9s; PPR 1.28k, 2.10k; InTASC 3d, 3k,5i, 8r, 10o; Technology 4.1s [ISTE 1c])</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attendance
This class meets once a week. Each session is critical to your success in this course.

| 30 points lost for each absence. Three or more absences can result in not passing this course. |
| 60 |

Safety Scavenger Hunt
(SCIENCE 1.1k, 1.2k, 1.4k, 1.5k, 1.6k, 1.7k, 1.8k, 1.9k, 1.5s)

Survey of the Texas Science Safety Standards

Final Exam
Comprehensive over material covered in the semester

Total
861

IV. Evaluation and Assessments (grading):

Grading scale for course

A = 863-777
B = 776-690
C = 689-603
F = below 603

V. Tentative Course Calendar:

<table>
<thead>
<tr>
<th>Week</th>
<th>Tentative Agenda</th>
<th>Homework/Important Due Dates</th>
</tr>
</thead>
</table>
| Class 1 August 27, 28, 29 | • Science Morning Meeting
• Discuss goals for course/syllabus
• Discuss/create science journals
• Unpack and analyze updated streamlined science TEKS
• What is science?
• Diagnostic science content test
• Adrienne Bay guest speaker from STEM Center | • Read the article *What’s the Story? Using the 5E Learning Cycle to Create Coherent Storylines* available in D2L News. **Be prepared to discuss in class next class meeting (September 3, 4, 5).**
• Purchase textbook |
| Class 2 September 3, 4, 5 | • Science Morning Meeting
• Discussion/activity article *What’s the Story? Using the 5E Learning Cycle to Create Coherent Storylines*
• Overview of 5E lesson plan
• Discuss safety in the science classroom. | • Read the article “Early Grades Science: the First Key STEM Opportunity” available in D2L News. **Be prepared to discuss in class next class meeting (September 10, 11, 12).**
• Practice 5E plan due in D2L September 8 at midnight.
• Safety Scavenger Hunt opens this week due in D2L September 15 at midnight. |
Class 3
September 10, 11, 12
- Science Morning Meeting
- Overview of STEM
- Analysis of Lakeshore STEM kits
- Discussion/activity of article
- Begin planning lesson with STEM Day partner.
- What is inquiry and how does it connect to science education? Mini-lesson.
- Write STEM Day 5E lesson plan with your STEM Day partner/trio. You will **bring a hard copy to class on September 17, 18, 19.**

Class 4
September 17, 18 ,19
- Science Morning Meeting
- Peer evaluation of 5E STEM lesson plan.
- How do you create a positive science classroom community in your classroom? Mini-lesson
- Final STEM Day 5E lesson plan due in D2L September 22 at midnight.
- Meet with your partner and plan science morning meeting. **To be presented in class on October 1, 2, 3.**

Class 5
September 24, 25, 26
- Science Morning Meeting
- Butterfly journaling.
- You will teach your STEM kit lesson to a peer group
- Debrief/reflect and discuss STEM kit lessons.
- Meet with your partner and plan science morning meeting. **To be presented in class on October 1, 2, 3.**

Class 6
October 1, 2, 3
- Science morning meeting presentations
- Practice activities for STEM Day Event.
- How do we assess science learning? Mini-lesson
- Questioning effectively in the science classroom discussion and activity.

Friday, October 4th 2019
STEM Day
SFA Grand Ballroom
8:00 AM-2:00 PM (tentative)

Class 7
October 8, 9, 10
Project Learning Tree Training
**Bring your PLT guide (textbook)!

Class 8
October 15, 16, 17
- Science Morning Meeting
- Science process skills activities demos/activities.
- Bringing it all together to implement quality science instruction in your own classroom.
- Introduction and history of Wild About Science Event.
- Develop a **rough draft** of your WAS 5E lesson plan. You will **bring a hard copy to class (October 29, 30, 31).**
VI. Required Text and Materials:

2. K-6 Streamlined Science TEKS
4. Wild About Science T-Shirt (usually around $15.00)

Resources:

Journals

American Biology Teacher, National Association of Biology Teachers —

American Scientist, Sigma XI, the Scientific Research Society —
www.americanscientist.org

ChemMatters, American Chemical Society — www.acs.org/

The Elementary School Journal, University of Chicago Press —
www.press.uchicago.edu/ucp/journals/journal/esj.html

Exceptional Children, Council for Exceptional Children — www.cec.sped.org

Instructor, Scholastic, Inc. — http://www.scholastic.com/teachers/instructor

Natural History, American Museum of Natural History — http://www.amnh.org/

Science and Children, National Science Teachers Association —
http://www.nsta.org/

Texas Science Teacher, Science Teachers Association of Texas —
http://statweb.org/

The Earth Scientist, National Earth Science Teachers Association —
http://www.nestanet.org/cms/content/welcome
Other Resources

Texas Education Agency. *Texas Essential Knowledge and Skills (TEKS)*.

ONLINE RESOURCES

Center on Instruction, RMC Research Corporation — www.centeroninstruction.org

Education Resources Information Center (ERIC) — www.eric.ed.gov

Searchlight, The University of Texas at Austin — http://searchlight.utexas.org

Texas Education Agency — www.tea.state.tx.us

USGS Education, U.S. Department of the Interior —

LiveText Statement:
FEM Statement:

In this course you must purchase and activate the LiveText/Watermark add-on, Field Experience Module (FEM), PRIOR to your first day of field experience/clinical teaching. Failure to purchase and activate the account and/or submit the required assignment(s) within the FEM system may result in course failure. FEM must be purchased from www.LiveText/Watermark.com for a fee of $18.00 for a multiple year subscription.

LiveText/Watermark Statement:

This course uses the LiveText/Watermark data management system to collect critical assessments for students who are Perkins College of Education majors (undergraduate, graduate, and doctoral) or majors in other colleges seeking educator certification through the Perkins College of Education. Students who do not have an existing LiveText/Watermark account will receive an access code via the SFA email system within the first week of class. You will be required to register your LiveText/Watermark account, and you will be notified how to do this via email. If you forward your SFA e-mail to another account and do not receive an e-mail concerning LiveText/Watermark registration, please be sure to check your junk mail folder and your spam filter for these e-mails.

If you have questions about obtaining or registering your LiveText/Watermark account or any technical questions, call 936-468-7050 or e-mail LiveText@sfasu.edu. Failure to activate the account and/or submit the required assignment(s) within the LiveText/Watermark system may result in course failure.
VII. Course Evaluations:

Near the conclusion of each semester, students in the College of Education electronically evaluate courses taken within the PCOE. Evaluation data is used for a variety of important purposes including: 1. Course and program improvement, planning, and accreditation; 2. Instruction evaluation purposes; and 3. Making decisions on faculty tenure, promotion, pay, and retention. As you evaluate this course, please be thoughtful, thorough, and accurate in completing the evaluation. Please know that the COE faculty is committed to excellence in teaching and continued improvement. Therefore, your response is critical!

In the Perkins College of Education, the course evaluation process has been simplified and is completed electronically through MySFA. Although the instructor will be able to view the names of students who complete the survey, all ratings and comments are confidential and anonymous, and will not be available to the instructor until after final grades are posted.

VIII. Student Ethics and Other Policy Information:

Class Attendance and Excused Absence: Policy 6.7

Regular, punctual attendance, documented participation, and, if indicated in the syllabus, submission of completed assignments is expected at all classes, laboratories, and other activities for which the student is registered. Based on university policy, failure of students to adhere to these requirements shall influence the course grade, financial assistance, and/or enrollment status. The instructor shall maintain an accurate record of each student’s attendance and participation as well as note this information in required reports and in determining final grades. Students may be excused from attendance for reasons such as health, family emergencies, or student participation in approved university-sponsored events. However, students are responsible for notifying their instructors in advance, when possible, for excusable absences. Whether absences are excused or unexcused, a student is still responsible for all course content and assignments. Students with accepted excuses may be permitted to make up work for up to three weeks of absences during a semester or one week of a summer term, depending on the nature of the missed work. Make-up work must be completed as soon as possible after returning from an absence.

Academic Accommodation for Students with Disabilities: Policy 6.1 and 6.6

To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 936-468-3004 as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices/.

Student Academic Dishonesty: Policy 4.1

Abiding by university policy on academic integrity is a responsibility of all university faculty and students. Faculty members must promote the components of academic integrity in their instruction, and course syllabi are required to provide information about penalties for cheating and plagiarism, as well as the appeal process.

Definition of Academic Dishonesty
Academic dishonesty includes both cheating and plagiarism. Cheating includes, but is not limited to:
- using or attempting to use unauthorized materials on any class assignment or exam;
- falsifying or inventing of any information, including citations, on an assignment; and/or;
- helping or attempting to help another in an act of cheating or plagiarism.
Plagiarism is presenting the words or ideas of another person as if they were one’s own. Examples of plagiarism include, but are not limited to:
- submitting an assignment as one’s own work when it is at least partly the work of another person;
- submitting a work that has been purchased or otherwise obtained from the Internet or another source; and/or,
- incorporating the words or ideas of an author into one's paper or presentation without giving the author credit.

Penalties for Academic Dishonesty
Penalties may include, but are not limited to, reprimand, no credit for the assignment or exam, re-submission of the work, make-up exam, failure of the course, or expulsion from the university.

Student Appeals
A student who wishes to appeal decisions related to academic dishonesty should follow procedures outlined in Academic Appeals by Students (6.3).

Withheld Grades: Policy 5.5

At the discretion of the instructor of record and with the approval of the academic unit head, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F, except as allowed through policy [i.e., Active Military Service (6.14)]. If students register for the same course in future semesters, the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average.

Student Code of Conduct: Policy 10.4

Classroom behavior should not interfere with the instructor’s ability to conduct the class or the ability of other students to learn from the instructional program. Unacceptable or disruptive behavior will not be tolerated. Students who disrupt the learning environment may be asked to leave class and may be subject to judicial, academic or other penalties. This policy applies to all instructional forums, including electronic, classroom, labs, discussion groups, field trips, etc. The instructor shall have full discretion over what behavior is appropriate/inappropriate in the classroom. Students who do not attend class regularly or who perform poorly on class projects/exams may be referred to the Early Alert Program at SFA.

Additional Information:

Code of Ethics for the Texas Educator:

The Texas educator shall comply with standard practices and ethical conduct toward students, professional colleagues, school officials, parents, and members of the community and shall safeguard academic freedom. The Texas educator, in maintaining the dignity of the profession, shall respect and
obey the law, demonstrate personal integrity, and exemplify honesty and good moral character. The Texas educator, in exemplifying ethical relations with colleagues, shall extend just and equitable treatment to all members of the profession. The Texas educator, in accepting a position of public trust, shall measure success by the progress of each student toward realization of his or her potential as an effective citizen. The Texas educator, in fulfilling responsibilities in the community, shall cooperate with parents and others to improve the public schools of the community. This chapter shall apply to educators and candidates for certification.

To complete Certification/Licensing Requirements in Texas related to public education and other professional settings, you will be required to:

1. Candidates must undergo a criminal history background check prior to clinical teaching and prior to employment as an educator. The public school campuses are responsible for completing the criminal background check. A person who is enrolled or planning to enroll in a State Board for Educator Certification-approved educator preparation program or planning to take a certification examination may request a preliminary criminal history evaluation letter regarding the person's potential ineligibility for certification due to a conviction or deferred adjudication for a felony or misdemeanor offense.

A Preliminary Criminal History Evaluation is a non-mandatory, non-binding evaluation of an individual's self-reported criminal history. In addition, the agency obtains your name-based Texas criminal history information. The service is provided to the requestor for a non-refundable fee. The requestor will receive an evaluation letter by email from agency staff advising of potential ineligibility for educator certification.

You are eligible to request a Preliminary Criminal History Evaluation if:

- You enrolled or planning to enroll in an educator preparation program or
- You are planning to take a certification exam for initial educator certification, and
- You have reason to believe that you may be ineligible for educator certification due to a conviction or deferred adjudication for a felony or misdemeanor offense.

You are not eligible for a preliminary evaluation of your criminal history if you do not have a conviction or deferred adjudication for a felony or misdemeanor offense.

In addition, you must complete the fingerprinting process when you apply for certification. Participation in the evaluation does not preclude you from submitting to a national criminal history review at the time you apply for your educator certification. Your criminal history will be reviewed and you may be subject to an investigation based on that criminal history, including any information you failed to submit for evaluation.
Additional information can be found at https://tea.texas.gov/Texas_Educators/Investigations/Preliminary_Criminal_History_Evaluation-FAQs/.

2. Provide one of the following primary ID documents: passport, driver’s license, state or providence ID cards, a national ID card, or military ID card to take the TExES exams (additional information available at www.texas.ets.org/registrationBulletin/ <http://www.texas.ets.org/registrationBulletin/>). YOU must provide legal documentation to be allowed to take these mandated examinations that are related to certification/licensing requirements in Texas. If you do not have legal documentation, you may want to reconsider your major while at SFASU.

3. Successfully complete state mandated a fingerprint background check. If you have a history of criminal activity, you may want to reconsider your major while at SFASU.

For further information, contact the Office of Assessment and Accountability at 936-468-1282 or edprep@sfasu.edu.

IX. Other Relevant Course Information:

ATTENDANCE:
This class meets once a week. Each session is critical to your success in this course (you begin with 60 attendance points and will lose 30 points for each absence). Three or more absences could result in not passing this course. The student will be responsible for all work missed during absences. Any excused Absence must have written doctor’s signature for day missed.

ASSIGNMENT POLICY:
All students are expected to complete assignments on the due date shown on the Tentative Course Calendar. In order to receive an ‘A’ in the course, ALL assignments must be completed. Failure to complete any assignment will result in an automatic reduction of the course grade earned by one letter grade, regardless of the total number of points earned. Written work in which the use of the English language is not at an acceptable level for a university senior will be returned to the intern marked "Unacceptable" and a zero assigned.

MAKE-UP WORK POLICY:
The decision whether to accept make-up work is at the discretion of the instructor. No make-up work will be accepted Dead Week or Finals Week.

LATE WORK POLICY:
No late work will be accepted.