CoSM Class Syllabus / Policy

2018 / Summer II Semester
GOL 101L.501 & GOL 101L.531
Fundamentals of Earth Science

Name: Dr. Mindy Faulkner
Department: Geology
Email: mgshaw@sfasu.edu
Phone: 936-468-2236
Office: E.L. Miller Science, Room 310
Office Hours: This is an online course and office hours will be offered electronically

The lecture and laboratory portion of this class are both online classes. Please refer to the detailed calendar found as a webpage in this module. There is a mandatory quiz associated with the syllabus, so please read all the information in this unit carefully and then complete the Laboratory Procedures Quiz in order to proceed into the course material.

Note: this quiz must be completed before any of the course material will be made available, the lecture and lab modules will remain locked until you complete this quiz.

Required Materials:

- Fundamentals of Earth Science Laboratory Kit (available from the SFA Barnes & Noble bookstore)

Course Description:

Fundamentals of Earth Science (GOL 101) Two hours lecture, two hours laboratory per week. An introduction to the fundamental principles of Earth Science: topics include the earth’s structure and surface landforms; mineral and energy resources; geologic hazards such as volcanoes, earthquakes and landslides; water resources; and the unifying theory of plate tectonics. Required lab fee. No prerequisites

Program Learning Outcomes:

There are no specific program learning outcomes for this major addressed in this course. It is a general education core curriculum course and / or a service course.

General Education Core Curriculum Objectives/Outcomes:

The student is expected to develop the following core objectives established by the THECB.

- Critical Thinking Skills – creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information.
- Communication Skills – effective development, interpretation and expression of ideas through written, oral and visual communication.
- Empirical and Quantitative Skills – manipulation and analysis of numerical data or observable facts resulting in informed conclusions.
- Teamwork – the ability to consider different points of view and to work effectively with others to support a shared purpose or goal.
Student Learning Outcomes for Lecture and Lab:

After successful completion of this course students will be able to:

- Demonstrate an understanding of fundamental geologic concepts as it relates to Earth processes and landscape evolution through geologic time.
- Use quantitative reasoning to interpret geologic data (tables, figures, graphs) from primary research, data assimilation and models to assess the differences in competing scientific theories associated with rock formation.
- Demonstrate knowledge on the interdependence of science and technology and the influences geologic reasoning associated with identifiable and testable hypotheses of geologic processes.
- Critically assess the interrelationships between geologic phenomena and communicate the resulting conclusions in oral, visual and written formats.
- Demonstrate an understanding of the skills and attitudes necessary for effective teamwork in collaborative learning activities.

Course Requirements:

GOL101L (Fundamentals of Earth Science) is an introduction to the study of the earth's structure and natural processes. In this course, students will be introduced to and apply the scientific method to evaluate hypotheses regarding the earth's structure, the distribution of natural resources, the immediate and long term impact of geologic hazards, and anthropogenic influence on the natural world.

This class is a 3-credit hour course and has a weekly requisite lab where students will gain hands-on experience with earth materials, gathering and analyzing data, communicating their findings and working as a team to explain scientific processes. Grades from the lecture and lab will be combined, with the lab counting 1/3 of the grade. You will receive one grade for the entire course, assigned by your instructor.

Time

Remember, you are expected to spend the same amount of time on online courses that you would spend for in the classroom for face-to-face courses. That is, expect to spend at least two hours per week on the lecture portion and two hours per week on the laboratory portion, per module. In addition, success in this course would also require additional time spent in the material and studying; reports indicate that two to three additional hours (per credit hour) be spent independent of whether the class is online or face-to-face. Many of you are choosing to take an online course because of your work schedule, family responsibilities, and scheduling conflicts, so your time is precious. Be aware of the time commitment required by this course and work responsibly.

Laboratory Topics to be covered: *

Earth Materials

- Geologic Time (Laboratory Quiz 1)
- Minerals (Laboratory Quiz 2)
- Intrusive Igneous Rocks (Laboratory Quiz 3)
- Sediments and Sedimentary Rocks (Laboratory Quiz 4)
- Metamorphic Rocks and the Rock Cycle (Laboratory Quiz 5)
- Midterm Exam
Earth Processes and Resources

- Earthquakes (Laboratory 6 Earthquake Press Release)
- Fossil Fuels (Laboratory Quiz 7)
- Mineral Resources (Laboratory Quiz 8)
- Water Resources (Laboratory Quiz 9)
- Soil Resources (Laboratory 10 Soil Resources Presentation)
- Alternative Energy (Laboratory 11 Group Position Statement)
- Final Exam

*Please see the Course Calendar webpage for the dates associated with each of these topics.

Access to Content

I give access to the laboratory content the Saturday before the instruction week, as listed on the Course Calendar. By no means are you required to begin the content the weekend before, but some of you have very tight schedules and could benefit from an early start. The midterm and final exams will be posted and available for the dates and times listed in the Course Calendar. You will be able to receive your score on exams or quizzes immediately, provided there are no answers that need to be individually graded such as fill-in-the-blank or short answer questions. In these cases, time will be needed to review the assessments and make sure questions were asked and graded fairly. Answers to quiz and exam questions will be available once every classmate has submitted their assessment, but that day is usually on day following the closing dates for each assessments. Quizzes, unit, and module content will be available until 11:30 p.m. the day before an exam, but module content cannot be viewed the day of an exam. So, plan appropriately!

Laboratory Examination Schedule:*

- Midterm Exam: July 20, 2018
- Final Exam: August 8-9, 2018

*Please see the Course Calendar webpage for the opening and closing times associated with these exams.

There are 50 questions each on the midterm and final exam; you will be given 120 minutes to complete the midterm exam and 60 minutes to complete the final exam. The exams are not cumulative, but they are timed and you will not have adequate time to refer back to Unit/Module content. Questions on the laboratory exams and quizzes are written by the instructor, and the assessment content has been presented in the online content. D2L randomly selects questions from a question bank, and they appear one question at a time. You may not return to any question and change your answer after leaving that page so be sure of your response (study ahead of time!) before answering. It is recommended that you save your responses as you complete each question because of unknown timing of computer or power failure. I cannot help you if questions have not been saved. Once the time allotment for the exam has expired, the exam will be ended and scored.

No outside work or extra credit will be assigned to help improve your grade, so be prepared for the quizzes and exams. It is imperative that you log on and participate in all course material, pay attention to the course calendar, and keep up with the due dates for quizzes, discussions, and exams. In other words – get your money’s worth!
Dependable internet connection

Especially when taking quizzes or exams, always rely on a dependable internet connection. I do not recommend taking an assessment via your phone or any unstable wireless connection (McDonalds, Starbucks, etc).

Discussion Board

The Discussion Board can be used as a place to exchange information amongst the instructor and classmates. There will be a general "Questions" post where students can ask questions regarding the weekly content. This is helpful to all, and I will respond to questions as quickly as possible. Please keep your discourse respectful to all; inappropriate comments will not be tolerated. If I miss your question in Discussions, please email and give me a gentle reminder. I always appreciate questions, and am happy to try to help.

Lecture Grading Policy:

- Four exams @ 100 points each = 400 points*
- Ten online quizzes @ 10 points each = 100 points
- Ten discussion posts @ 10 points each = 100 points
- Total possible points = 600 points
- Lecture grade = your total points / 600, then multiply by 100

 Example: your lecture point total 450 / 600 = 0.75 x 100 = 75

Laboratory Grading Policy:

- Two exams @ 100 points each = 200 points
- Eight laboratory quizzes @ 10 points each = 80 points
- One Earthquake Press Release @ 20 points each = 20 points
- One Soil Resources Presentation @ 20 points each = 20 points
- One Alternative Energy Group Position Statement @ 25 points each = 25 points
- One Group Survey @ 5 points each = 5 points
- Total possible points = 350 points
- Laboratory grade = your total points / 350, then multiply by 100

 Example: your laboratory point total 242 / 350 = 0.69 x 100 = 69

Course Final Grading Policy

- Lecture counts 2/3 (66.7%) of the final course grade
- Lab counts 1/3 (33.3%) of the final course grade
- Total Points for Final Grade: 33.3% (Lab) + 66.7% (Lecture) = final course grade

 Example: Lecture grade = 75, Lab grade = 69

 75 x .667 = 50.03; 69 x .333 = 23.00; 50.03 + 23.0 = 73.03 final course grade

Grade Scale: 90-100 + A, 80-89 + B, 70-79 + C, 60-69 + D, < 60 = F
Academic Integrity (A-9.1)
Academic integrity is a responsibility of all university faculty and students. Faculty members promote academic integrity in multiple ways including instruction on the components of academic honesty, as well as abiding by university policy on penalties for cheating and plagiarism.

Definition of Academic Dishonesty
Academic dishonesty includes both cheating and plagiarism. Cheating includes but is not limited to (1) using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class; (2) the falsification or invention of any information, including citations, on an assigned exercise; and/or (3) helping or attempting to help another in an act of cheating or plagiarism. Plagiarism is presenting the words or ideas of another person as if they were your own. Examples of plagiarism are (1) submitting an assignment as if it were one's own work when, in fact, it is at least partly the work of another; (2) submitting a work that has been purchased or otherwise obtained from an Internet source or another source; and (3) incorporating the words or ideas of an author into one's paper without giving the author due credit.

Please read the complete policy at http://www.sfasu.edu/policies/academic_integrity.asp

Withheld Grades Semester Grades Policy (A-54)
Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average.

Students with Disabilities
To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices/.