I. Course Description:

Teaching Science in EC-6
Examination of the science curriculum for grades EC-6 with emphasis on current practices, trends and research on effective practices for teaching science. Includes investigation of activities and materials appropriate for achieving science objectives.

Prerequisites: Admission to Educator Preparation; enrolled in ELE 450 (Field Experience II)

Course Rationale: Through the past decade, elementary science education has taken on a "new" direction. Two factors that have given direction to the new elementary education curriculum are: (1) studies of the intellectual development of the young child, and (2) a shift from the lecture-demonstration teaching method to a discovery inquiry learning method. Science is a methodology (process) as well as a body of knowledge (content). Process and content are closely interrelated and both are essential in the science curriculum. It also encompasses a set of personal characteristics (attitudes), which reflects certain behavioral traits of a scientist/problem solver. Coverage of a fixed body of information is not to be regarded as an end in itself, but rather we should focus upon helping children develop an understanding of significant conceptual relationships. Students of science must develop proficiency in collecting, analyzing, synthesizing, and evaluating data, and in making application of this data to new problems. They must also be able to use basic scientific terminology and express simple basic number relationships in mathematical terms. Special consideration should be given to the ways in which scientific theories and laws are discovered, refined and tested. An understanding that theories and laws are regarded as tentative and open to revision should be developed. These ideas furnish this course with its objectives.

Mission: Through active participation in classroom projects/activities and outside field investigations the mission of this class, and the College Of Education, is to prepare competent, successful, caring and enthusiastic professionals dedicated to responsible service, leadership and continued professional and intellectual development.

II. Intended Learning Outcomes /Goals/Objectives:

Teaching elementary science is a hands-on /minds-on learning opportunity for teacher candidates at SFASU. It is our intent in the College of Education to prepare professional educators who positively impact learning for all students and graduate productive citizens and successful leaders. This science methods course supports the Mission of the College of Education by providing teacher candidates an opportunity to work with EC-6 public school students as we prepare them to become competent, successful, caring and enthusiastic professionals. One of the goals of the College of Education is to provide a variety of teaching venues incorporating the latest technologies to a range of diverse student interests, backgrounds, and aspirations. Another goal is to collaborate with external partners to enhance
student's knowledge, skills, and dispositions, and to influence the ongoing exchange of ideas for mutual benefit. This is accomplished in their field investigations at the SFA Arboretum and the Pineywoods Native Plant Center. The ACEI standards require that teacher candidates have opportunities to work with student and parents, and this also takes place in their field investigations. Public and private school students and their parents participate in these field investigations led by our teacher candidates. Teacher candidates learn to assess, plan, and implement instruction at appropriate levels. They also learn to use on-going assessment to reflect on student learning and teaching strategies to plan for future instruction. The teacher candidates at SFASU become reflective professionals who have experience planning appropriate instruction for diverse student learners. Teacher candidates participate in action research in this course to advance knowledge and to confirm best practices in elementary science teaching. Teacher candidates receive professional development credit and certification from national education organizations as a part of this course. They engage in outreach services, enhance student learning, and promote the reputation of the university through their field experiences.

Please follow this link to visit the SFASU College of Education Conceptual Framework: http://www.sfasu.edu/education/about/accreditations/ncate/conceptual/

EC6 Undergraduate Program Learning Outcomes and Student Learning Outcomes:

PLO 1 Candidates know, understand, and use the major concepts, principles, theories, and research related to development of children and young adolescents to construct learning opportunities that support individual students' development, acquisition of knowledge, and motivation.

- **SLO 1.1** Candidates will know and understand the history and nature of science.
 - **SLO 1.1.2** Assessment - NSTA Position Statement Discussion Board (SCIENCE 6.2k, 6.3k, 6.7k, 6.10k, 6.3s).

- **SLO 1.2** – Candidates will understand how students learn in science and how science interacts with and influences personal and societal decisions.
 - **SLO 1.2.1** Assessment –How do children best learn science? Quiz (SCIENCE 4.2k, 7.1k, 7.3k, 7.4k, 7.5k, 7.7k, 7.1s, 7.4s, 7.6s).
 - **SLO 1.2.2** Assessment – Wild About Science Field Experience: Content Research (SCIENCE 7.1k, 7.3k, 7.4k, 7.5k, 7.7k, 9.1k, 9.2k, 9.4k, 9.5k, 9.6k, 9.7k, 9.11k; PPR 1.18k, 1.18s, 4.15s; InTASC 5p, 9n; Technology 1.3s [ISTE 7c], 3.6s [ISTE 3b], 7.11s [ISTE 3d]).

PLO 2 Candidates know, understand, and demonstrate a high level of competence in their content in the areas of English language arts, mathematics, science, and social studies.

- **SLO 2.1** Candidates will understand use of tools, materials, equipment, and technologies and manage classroom, field, and laboratory activities to ensure the safety of all students and ethical care and treatment of organisms and specimens.
 - **SLO 2.1.1** Assessment – Creating a Positive Classroom Environment Quiz – (SCIENCE 1.1k, 1.2k, 1.4k, 1.5k, 1.6k, 1.7k, 1.8k, 1.9k, 1.5s, 4.12k, PPR 2.10k, 2.17k, InTASC 3d, 3k, 3o, 10o).
 - **SLO 2.1.2** Assessment – Making Science Accessible for All Learners Quiz (SCIENCE 2.3s, 4.8k, 4.9k, 4.10k; PPR 2.10k; InTASC 3d, 3k, 10o).
 - **SLO 2.1.3** Assessment – Science Safety Scavenger Hunt (SCIENCE 1.1k, 1.2k, 1.4k, 1.5k, 1.6k, 1.7k, 1.8k, 1.9k, 1.5s).
 - **SLO 2.1.4** Assessment – Wild About Science Field Experience: Implementation Teaching (SCIENCE 1.3s, 2.2s, 2.3s, 2.9s, 3.5s, 3.6s, 3.7s, 3.8s, 4.1s, 4.2s, 4.3s, 4.4s, 4.5s, 4.6s, 4.8s, 4.9s, 4.12s, 4.13s, 4.14s, 4.15s, 4.16s, 6.3s, 7.1s, 7.4s, 7.6s, 9.1s, 9.2s, 9.3s, 9.7s, 9.8s, 9.9s, 9.16s, 9.17s, 9.18s, 9.21s, 9.22s; PPR 1.18s, Technology 4.11s [ISTE 7b, 7c]).
 - **SLO 2.2** Candidates will know and understand theoretical and practical knowledge of
science teaching including the process of scientific inquiry and its role in instruction.

- **SLO 2.2.1** Assessment – Analysis, development and implementation of STEM Kit Lesson; (SCIENCE 3.1k, 3.2k, 3.4k, 3.5k, 3.6s, 3.7s, 3.8s; PPR 2.17k; InTASC 3o)
- **SLO 2.2.2** Assessment – Analysis, development and implementation of STEM Kit lesson (SCIENCE 4.3k, 4.4k, 4.7k, 4.13k, 4.14s, 4.16s; PPR 1.18k; InTASC 5p)
- **SLO 2.2.3** Assessment – Raising Butterflies Activity (SCIENCE 1.5k, 9.1k, 9.2k, 9.4k, 9.5k, 9.6k, 9.7k, 9.11k, 9.1s, 9.2s, 9.3s, 9.7s, 9.8s, 9.9s, 9.16s, 9.17s, 9.18s, 9.21s, 9.22s; Technology 1.3s [ISTE 7c], 3.6s [ISTE 3b], 4.11s [ISTE 7b, 7c], 7.11s [ISTE 3d])
- **SLO 2.2.4** Assessment – Science Process Skills Assignment (SCIENCE 3.4k, 3.5s, 3.6s, 3.7s, 3.8s, 4.5k, 4.7k, 4.12k, 4.2s, 4.5s)
- **SLO 2.2.5** Assessment - Science Process Skills Assignment (SCIENCE 3.4k, 3.5k, 3.5s, 3.6s, 3.7s, 3.8s, 3.9s, 3.11s, 3.1s, 3.6s, 4.1s, 4.2s, 4.5s)

- **SLO 2.3.1** Assessment – What is Inquiry in Science? Instruction Quiz (SCIENCE 4.5k, PPR 1.21k; InTASC 7c)
- **SLO 2.3.2** Assessment – Science Diagnostic Assessment Quiz (SCIENCE 2.5k, 2.6k, 4.3k, 4.7k, 4.8k, 4.9k, 4.10k, 4.12k, 4.13k, 4.16s, 9.1k, 9.2k, 9.4k, 9.5k, 9.6k, 9.7k, 9.11k, 9.1s, 9.2s, 9.3s, 9.7s, 9.8s, 9.9s, 9.16s, 9.17s, 9.18s, 9.21s, 9.22s; PPR 1.18k, 1.18s, 4.14s; InTASC 5p 9n; Technology 7.11s [ISTE 3d])
- **SLO 2.3.3** Assessment – Wild About Science Field Experience and STEM Kit lesson: 5E Lesson Plan addressing curriculum standards/alignment, TEKS, learning objective, ELPS and language objective (SCIENCE 1.1s, 4.3k, 4.4k; PPR 1.21k; InTASC 7c)
- **SLO 2.3.4** Assessment - Science Process Skill Assignment (SCIENCE 3.4k, 3.5k, 3.5s, 3.6s, 3.7s, 3.8s)

- **SLO 2.4** – Candidates will know and use varied and appropriate assessment practices (formative/summative) to monitor science learning.
 - **SLO 2.4.1** Assessment – Demonstration of effective questioning techniques in STEM Kit implementation (SCIENCE 3.2k, 3.2s, 3.5s)
 - **SLO 2.4.2** Assessment – Assessing Science Learning Quiz (SCIENCE 3.9s, 3.11s, 5.1k, 5.3k, 5.4k, 5.5k, 5.6k, 5.7k, 5.8k, 5.9k, 5.10k, 5.11k; PPR 2.17k; InTASC 3o)
 - **SLO 2.4.3** Assessment – Wild About Science, Butterfly Partners, STEM Kit: Assessment of Instruction (SCIENCE 3.11s, 5.1s, 5.2s, 5.3s, 5.5s, 5.7s, 5.8s)

- **SLO 2.4.4** Assessment – Wild About Science, Butterfly Partners, STEM Kit : Summative Reflection (SCIENCE 1.3s, 2.2s, 2.3s, 3.5s, 3.6s, 3.8s, 4.1s, 4.2s, 4.6s, 4.12s, 4.13s; PPR 1.21k, 2.10k, 2.17k; InTASC 3d, 5k, 3o, 7c, 10o)

- **SLO 2.5** - Candidates will demonstrate the ability to use appropriate technology for EC6 science instruction.
 - **SLO 2.5.1** Assessment – Technology Tools and Resources for Science Learning Quiz (SCIENCE 2.5k, 2.6k, 3.9s; PPR 1.28k, 2.10k, InTASC 3d, 3k, 5l, 8r, 10o; Technology 4.1s [ISTE 1c])
 - **SLO 2.5.2** Assessment – The Role of E-Learning in Science Education Discussion Board (SCIENCE 2.6k; PPR 1.28, 2.10k, InTASC 3d, 3k, 5l, 8r, 10o; Technology 4.1s [ISTE 1c])
 - **SLO 2.5.3** Assessment - Videos and virtual communication in Butterfly Partners Project (SCIENCE 2.10s, 3.5k, 3.2s, 4.12k, 4.7s; PPR 1.18S, 2.17K, 4.15s; InTASC 3o, 9n; Technology 1.3s [ISTE 7c], 3.6s [ISTE 3b], 4.1s [ISTE 1c], 4.11s [ISTE 7b, 7c], 7.11s [ISTE 3d])

III. Course Assignments, Activities, Instructional Strategies, use of technology:
<table>
<thead>
<tr>
<th>Assignment</th>
<th>Brief explanation</th>
<th>points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic science test (LIVETEXT ASSESSMENT) (SCIENCE 2.5k, 2.6k, 4.3k, 4.7k, 4.8k, 4.9k, 4.10k, 4.12k, 4.13k, 9.1k, 9.2k, 9.4k, 9.5k, 9.6k, 9.7k, 9.11k,)</td>
<td>Assessment of science content knowledge which will be assessed on the EC6 core subjects state certification exam.</td>
<td>50</td>
</tr>
<tr>
<td>3 Butterfly life cycle videos & virtual communication (SCIENCE 2.10s, 3.5k, 4.12k, 4.7s; PPR 1.18s, 2.17K, 4.15s; InTASC 3o, 9n; Technology 1.3s [ISTE 7c], 3.6s [ISTE 3b], 4.1s [ISTE 1c], 4.11s [ISTE 7b, 7c], 7.11s [ISTE 3d])</td>
<td>Videos will assist 2nd graders in understanding stages in butterfly life cycle.</td>
<td>3 @ 50 points each 150</td>
</tr>
<tr>
<td>Butterfly Activity & Assessment (SCIENCE 1.5k, 9.1k, 9.2k, 9.4k, 9.5k, 9.6k, 9.7k, 9.11k, 9.1s, 9.2s, 9.3s, 9.7s, 9.8s, 9.9s, 9.16s, 9.17s, 9.18s, 9.21s, 9.22s; Technology 1.3s [ISTE 7c], 3.6s [ISTE 3b], 4.11s [ISTE 7b, 7c], 7.11s[ISTE 3d]) (SCIENCE 3.11s, 5.1s, 5.2s, 5.3s, 5.5s, 5.7s, 5.8s) (SCIENCE 1.3s, 2.2s, 2.3s, 3.5s, 3.6s, 3.8s, 4.1s, 4.2s, 4.6s, 4.12s, 4.13s; PPR 1.21k, 2.10k, 2.17k; InTASC 3d, 3k, 3o, 3c, 7o)</td>
<td>Plan and implement a butterfly activity as a culmination of Butterfly Partnership with 2nd graders</td>
<td>100</td>
</tr>
<tr>
<td>Model science journal</td>
<td>Creation of a model science journal</td>
<td>100</td>
</tr>
<tr>
<td>Development of STEM kit (SCIENCE 3.1k, 3.2k, 3.4k, 3.5k, 3.5s, 3.6s, 3.7s, 3.8s; PPR 2.17k; InTASC 3o) (SCIENCE 4.3k, 4.4k, 4.7k, 4.13k, 4.14s, 4.16s; PPR 1.18K; InTASC 5p) (SCIENCE 1.1s, 4.3k, 4.4k; PPR 1.21k; InTASC 7c) (SCIENCE 3.11s, 5.1s, 5.2s, 5.3s, 5.5s, 5.7s, 5.8s)</td>
<td>Develop a STEM kit which meets TEKS standards and NYAEC developmental standards</td>
<td>50</td>
</tr>
<tr>
<td>Implementation of STEM kit (SCIENCE 3.1k, 3.2k, 3.4k, 3.5k, 3.5s, 3.6s, 3.7s, 3.8s; PPR 2.17k; InTASC 3o) (SCIENCE 4.3k, 4.4k, 4.7k, 4.13k, 4.14s, 4.16s; PPR 1.18K; InTASC 5p) (SCIENCE 1.1s, 4.3k, 4.4k; PPR 1.21k; InTASC 7c) (SCIENCE 3.11s, 5.1s, 5.2s, 5.3s, 5.5s, 5.7s, 5.8s)</td>
<td>Implement STEM kit successfully with K-3rd graders</td>
<td>50</td>
</tr>
<tr>
<td>Wild About Science Lesson Plan (SCIENCE 7.1k, 7.3k, 7.4k, 7.5k, 7.7k, 9.1k, 9.2k, 9.4k, 9.5k, 9.6k, 9.7k, 9.11k; PPR 1.18k, 1.18s, 4.15s; InTASC 5p, 9n; Technology 1.3s [ISTE 7c], 3.6s [ISTE 3b], 7.11s [ISTE 3d]) (SCIENCE 1.3s, 2.2s, 2.3s, 2.9s, 3.5s, 3.6s, 3.7s, 3.8s, 4.1s, 4.2s, 4.3s, 4.4s, 4.5s, 4.6s, 4.8s, 4.9s, 4.12s, 4.13s, 4.14s, 4.15s, 4.16s, 6.3s, 7.1s, 7.4s, 7.6s, 9.1s, 9.2s, 9.3s, 9.7s, 9.8s, 9.9s, 9.16s, 9.17s, 9.18s, 9.21s, 9.22s; PPR 1.18s, Technology 4.11s [ISTE 7b, (SCIENCE 4.3k, 4.7k, 4.8k, 4.9k, 4.10k, 4.12k, 4.13k, 4.66, 4.16s, 9.1k, 9.2k, 9.4k, 9.5k, 9.6k, 9.7k, 9.11k, 9.1s, 9.2s, 9.3s, 9.7s, 9.8s, 9.9s, 9.16s, 9.17s, 9.18s, 9.21s, 9.22s; PPR 1.18k, 1.18s, 4.14s; InTASC 5p 9n; Technology 7.11s [ISTE 3d]) (SCIENCE 1.1s, 4.3k, 4.4k; PPR 1.21k; InTASC 7c) (SCIENCE 3.11s, 5.1s, 5.2s, 5.3s, 5.5s, 5.7s, 5.8s)</td>
<td>Write a lesson plan that meets TEKS science standards for 4th & 5th graders</td>
<td>100</td>
</tr>
<tr>
<td>Wild About Science Reflection (SCIENCE 1.3s, 2.2s, 2.3s, 3.5s, 3.6s, 3.8s, 4.1s, 4.2s, 4.6s, 4.12s, 4.13s; PPR 1.21k, 2.10k, 2.17k; InTASC 3d, 3k, 3o, 7c, 10o)</td>
<td>Self-reflection on implementation of Wetlands Adventure/Wild About Science station</td>
<td>25</td>
</tr>
<tr>
<td>Wild About Science materials</td>
<td>Materials are ready on time and are well-done—sturdy and appropriate for grade level TEKS</td>
<td>25</td>
</tr>
<tr>
<td>Six quizzes 1. (SCIENCE 6.2k, 6.3k, 6.7k, 6.10k, 6.3s), 2. (SCIENCE 1.1k, 1.2k, 1.4k, 1.5k, 1.6k, 1.7k, 1.8k, 1.9k, 1.5s, 4.12k, PPR 2.10k, 2.17k; InTASC 3d, 3k, 3o, 10c), 3. (SCIENCE 2.3k, 4.8k, 4.9k, 4.10k; PPR 2.10k; InTASC 3d, 3k, 10o), 4. (SCIENCE 4.5k, PPR 1.21k; InTASC 7c), 5. (SCIENCE 3.9s, 3.11s, 5.1k, 5.3k, 5.4k, 5.5k, 5.6k, 5.7k, 5.8k, 5.9k, 5.10k, 5.11k; PPR 2.17k; InTASC 3o), 6. (SCIENCE 2.5k, 2.6k, 3.9s; PPR 1.28k, 2.10k, InTASC 3d, 3k, 5l, 8r, 10o; Technology 4.1s [ISTE 1c])</td>
<td>These quizzes can be given at any time during the semester and will be over material covered in class and assigned readings</td>
<td>6 @ 25 points each 150</td>
</tr>
<tr>
<td>Professionalism Participation</td>
<td>You are present both mentally and physically for every class and are prepared with required materials.</td>
<td>40</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Attendance</td>
<td>30 points lost for each absence. Three or more absences can result in not passing this course.</td>
<td>60</td>
</tr>
<tr>
<td>Safety Scavenger Hunt</td>
<td>Survey of the Texas Science Safety Standards</td>
<td>50</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Comprehensive over material covered in the last half of the semester</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1000</td>
</tr>
</tbody>
</table>

IV. Evaluation and Assessments (grading):

Grading scale for course

- **A** = 900-1000
- **B** = 800-899
- **C** = 700-799
- **F** = Below 700

V. Tentative Course Calendar:

<table>
<thead>
<tr>
<th>Week</th>
<th>What we will do in class</th>
<th>Homework/Important Due Dates</th>
</tr>
</thead>
</table>
| Aug. 28, 29, 30 | 1. Discuss goals for course.
2. Set up science journals.
3. Unpack and analyze new streamlined science TEKS.
4. Discuss big projects in course.
5. Brainstorm ideas for Butterfly Partners Video I in butterfly groups. | 1. Read the article “Early Grades Science: the First Key STEM Opportunity” in D2L. **Be prepared to discuss in class on Sept. 4, 5, 6.**
2. Research stages in butterfly life cycle and create Butterfly Partners Video I. You will need to meet with your group to get this completed. **Due Sept. 3rd 11:59 PM**
3. Get your textbook. |
| Class 1 | | |
| Sept. 4, 5, 6 | 1. Diagnostic science content test.
2. Overview of STEM Mini-lesson.
4. View and evaluate created butterfly videos.
5. Work in butterfly groups to create Butterfly Journals for 2nd graders.
| Class 2 | | |
| Sept. 11, 12, 13| 1. Continue analysis of Lakeshore STEM kits.
2. Begin planning lesson with STEM kit partner. | 1. Collect materials for STEM kits. **Due in class on Sept. 18, 19, 20.** |
<table>
<thead>
<tr>
<th>Date</th>
<th>Class</th>
<th>Activity</th>
</tr>
</thead>
</table>
| Sept. 18, 19, 20 | | 1. Analyze and discuss original STEM kits-peer review in groups.
2. Work on Butterfly Partners Video II with butterfly group.
3. How do you create a positive science classroom community? Mini-lesson. |
| | 4 | 1. Finalize Butterfly Partners Video II. You will need to meet with your group to get this completed. Due Sept. 24th.
2. Finalize and make sure that you have applied peer feedback and Dr. Kahn's feedback to STEM kit lesson. Lessons will be presented in Charter school classrooms on Sept. 25, 26, 27. |
| Sept. 25, 26, 27 | 5 | STEM Kit Event
1. You will teach your STEM kit lesson in a charter school classroom in the morning from 8:30-9:15 AM.
2. Debrief/reflect and discuss how STEM kit lessons went. |
| Oct. 2, 3, 4 | 6 | 1. Work in butterfly groups to create a butterfly life cycle activity for your 2nd graders. Due Oct.9, 10, 11 in class
2. Work in butterfly groups to create a brief post-assessment for your 2nd graders over butterfly life cycle and stages.
3. Work on your last butterfly video. Video III |
| Oct. 9, 10, 11 | 7 | Wild About Science/Project Learning Tree training.
Bring your PLT guide (textbook)! |
| Oct. 16, 17, 18 | 8 | Butterfly Event at TJR
12:30-2:30 |
| Oct. 23, 24, 25 | 9 | No F2F class this week. You will be working with your Wild About Science partner to create your lesson plan and develop materials. |
2. All materials for Wild About Science lesson are due in class! Everything!
3. Practice run with your partner--Wild About Science lesson.
Finalize Wild About Science lesson. Apply feedback and be ready to present at the event on Nov. 6, 7, 8. |
<table>
<thead>
<tr>
<th>Date</th>
<th>Class/Event</th>
<th>Instructions</th>
</tr>
</thead>
</table>
| Nov. 6, 7, 8 | Wild About Science Event at the Pinewoods Native Plant Center. **Be there at 8:30 AM** | 1. Complete your reflection of the Wild About Science event. **Due Nov. 11th at 11:59 PM in D2L.**
2. Read the article “What’s the Story? Using the 5E learning cycle to create coherent storylines” in D2L. **Be prepared to discuss in class on Nov. 13, 14, 15.** |
| | | |
| Nov. 13, 14, 15 | 1. Science content activities
2. Discuss “What’s the Story?” article and activity using PLT textbook. Bring your PLT guide today!
3. The role of e-learning in science education. | 1. Safety Scavenger Hunt in D2L **Due Nov. 18th at 11:59 PM**
2. Role of E-learning in Science education discussion post in D2L. **Due Dec. 2 11:59 in D2L.** |
| Nov. 19-25 | **Thanksgiving Holidays** | |
| Nov. 27, 28, 29 | 1. Science Content activities
2. Analysis of science process skills and how they connect to Wild About Science, Butterfly Partners, and STEM Kit assignments. | |
| Dec. 4, 5, 6 | **Final Exam** | |

VI. Required Text and Materials:

1. Textbook-Project Learning Tree Pre K-8 Environmental Education Activity Guide. Copyright 2016. Tenth Printing. Available using this link https://conta.cc/2zWNoFk

2. K-6 Streamlined Science TEKS
3. Marble Composition notebook to use a science journal. Should have at least 100 wide-ruled sheets.
4. Wetlands Adventure T-Shirt (usually around $15.00)

LiveText Statement:

This course uses the LiveText data management system to collect critical assessments for students who are Perkins College of Education majors (undergraduate, graduate, and doctoral) or majors in other colleges seeking educator certification through the Perkins College of Education. Students who do not have an existing LiveText account will receive an access code via the SFA email system within the first week of class. You will be required to register your LiveText account, and you will be notified how to do this via email. If you forward your SFA e-mail to another account and do not receive an e-mail concerning LiveText registration, please be sure to check your junk mail folder and your spam filter for these e-mails.

If you have questions about obtaining or registering your LiveText account, call ext. 1267 or e-mail SFALiveText@sfasu.edu. Once LiveText is activated, if you have technical questions, call ext. 7050 or e-mail livetext@sfasu.edu. Failure to activate the account and/or submit the required assignment(s) within the LiveText system may result in course failure.

VII. Course Evaluations:

Near the conclusion of each semester, students in the College of Education electronically evaluate courses taken within the PCOE. Evaluation data is used for a variety of important purposes including: 1. Course and program improvement, planning, and accreditation; 2. Instruction evaluation purposes; and 3. Making decisions on faculty tenure, promotion, pay, and retention. As you evaluate this course, please be thoughtful, thorough, and accurate in completing the evaluation. Please know that the COE faculty is committed to excellence in teaching and continued improvement. Therefore, your response is critical!

In the Perkins College of Education, the course evaluation process has been simplified and is completed electronically through MySFA. Although the instructor will be able to view the names of students who complete the survey, all ratings and comments are confidential and anonymous, and will not be available to the instructor until after final grades are posted.

VIII. Student Ethics and Other Policy Information:

Class Attendance and Excused Absence: Policy 6.7

Regular, punctual attendance, documented participation, and, if indicated in the syllabus, submission of completed assignments is expected at all classes, laboratories, and other activities for which the student is registered. Based on university policy, failure of students to adhere to these requirements shall influence the course grade, financial assistance, and/or enrollment status. The instructor shall maintain an accurate record of each student’s attendance and participation as well as note this information in required reports and in determining final grades. Students may be excused from attendance for reasons such as health, family emergencies, or student participation in approved university-sponsored events. However, students are responsible for notifying their instructors in advance, when possible, for excusable
absences. Whether absences are excused or unexcused, a student is still responsible for all course content and assignments. Students with accepted excuses may be permitted to make up work for up to three weeks of absences during a semester or one week of a summer term, depending on the nature of the missed work. Make-up work must be completed as soon as possible after returning from an absence.

Academic Accommodation for Students with Disabilities: Policy 6.1 and 6.6

To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 936-468-3004 as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices/.

Student Academic Dishonesty: Policy 4.1

Abiding by university policy on academic integrity is a responsibility of all university faculty and students. Faculty members must promote the components of academic integrity in their instruction, and course syllabi are required to provide information about penalties for cheating and plagiarism, as well as the appeal process.

Definition of Academic Dishonesty

Academic dishonesty includes both cheating and plagiarism. Cheating includes, but is not limited to:
- using or attempting to use unauthorized materials on any class assignment or exam;
- falsifying or inventing of any information, including citations, on an assignment; and/or;
- helping or attempting to help another in an act of cheating or plagiarism.

Plagiarism is presenting the words or ideas of another person as if they were one’s own. Examples of plagiarism include, but are not limited to:
- submitting an assignment as one’s own work when it is at least partly the work of another person;
- submitting a work that has been purchased or otherwise obtained from the Internet or another source; and/or,
- incorporating the words or ideas of an author into one's paper or presentation without giving the author credit.

Penalties for Academic Dishonesty

Penalties may include, but are not limited to, reprimand, no credit for the assignment or exam, re-submission of the work, make-up exam, failure of the course, or expulsion from the university.

Student Appeals

A student who wishes to appeal decisions related to academic dishonesty should follow procedures outlined in Academic Appeals by Students (6.3).

Withheld Grades: Policy 5.5

At the discretion of the instructor of record and with the approval of the academic unit head, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the
end of the semester in which they receive a WH, or the grade automatically becomes an F, except as allowed through policy [i.e., Active Military Service (6.14)]. If students register for the same course in future semesters, the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average.

Student Code of Conduct: Policy 10.4

Classroom behavior should not interfere with the instructor’s ability to conduct the class or the ability of other students to learn from the instructional program. Unacceptable or disruptive behavior will not be tolerated. Students who disrupt the learning environment may be asked to leave class and may be subject to judicial, academic or other penalties. This policy applies to all instructional forums, including electronic, classroom, labs, discussion groups, field trips, etc. The instructor shall have full discretion over what behavior is appropriate/inappropriate in the classroom. Students who do not attend class regularly or who perform poorly on class projects/exams may be referred to the iCare: Early Alert Program at SFA. Information regarding the iCare program is found at http://www.sfasu.edu/judicial/earlyalert.asp or call the office at 936-468-2703.

Additional Information:

Code of Ethics for the Texas Educator:

The Texas educator shall comply with standard practices and ethical conduct toward students, professional colleagues, school officials, parents, and members of the community and shall safeguard academic freedom. The Texas educator, in maintaining the dignity of the profession, shall respect and obey the law, demonstrate personal integrity, and exemplify honesty and good moral character. The Texas educator, in exemplifying ethical relations with colleagues, shall extend just and equitable treatment to all members of the profession. The Texas educator, in accepting a position of public trust, shall measure success by the progress of each student toward realization of his or her potential as an effective citizen. The Texas educator, in fulfilling responsibilities in the community, shall cooperate with parents and others to improve the public schools of the community. This chapter shall apply to educators and candidates for certification.

To complete Certification/Licensing Requirements in Texas related to public education and other professional settings, you will be required to:

1. Candidates must undergo a criminal history background check prior to clinical teaching and prior to employment as an educator. The public school campuses are responsible for completing the criminal background check. A person who is enrolled or planning to enroll in a State Board for Educator Certification-approved educator preparation program or planning to take a certification examination may request a preliminary criminal history evaluation letter regarding the person's
potential ineligibility for certification due to a conviction or deferred adjudication for a felony or misdemeanor offense.

A Preliminary Criminal History Evaluation is a non-mandatory, non-binding evaluation of an individual's self-reported criminal history. In addition, the agency obtains your name-based Texas criminal history information. The service is provided to the requestor for a non-refundable fee. The requestor will receive an evaluation letter by email from agency staff advising of potential ineligibility for educator certification.

You are eligible to request a Preliminary Criminal History Evaluation if:

- You enrolled or planning to enroll in an educator preparation program or
- You are planning to take a certification exam for initial educator certification, and
- You have reason to believe that you may be ineligible for educator certification due to a conviction or deferred adjudication for a felony or misdemeanor offense.

You are not eligible for a preliminary evaluation of your criminal history if you do not have a conviction or deferred adjudication for a felony or misdemeanor offense.

In addition, you must complete the fingerprinting process when you apply for certification. Participation in the evaluation does not preclude you from submitting to a national criminal history review at the time you apply for your educator certification. Your criminal history will be reviewed and you may be subject to an investigation based on that criminal history, including any information you failed to submit for evaluation.

Additional information can be found at https://tea.texas.gov/Texas_Educators/Investigations/Preliminary_Criminal_History_Evaluation-FAQs/.

2. Provide one of the following primary ID documents: passport, driver’s license, state or providence ID cards, a national ID card, or military ID card to take the TExES exams (additional information available at www.texas.ets.org/registrationBulletin/<http://www.texas.ets.org/registrationBulletin/>). YOU must provide legal documentation to be allowed to take these mandated examinations that are related to certification/licensing requirements in Texas. If you do not have legal documentation, you may want to reconsider your major while at SFASU.

3. Successfully complete state mandated a fingerprint background check. If you have a history of criminal activity, you may want to reconsider your major while at SFASU.

For further information concerning this matter, contact Katie Snyder Martin at 936-468-1740 or snyderke1@sfasu.edu.
IX. Other Relevant Course Information:

ATTENDENCE:
We only meet once a week, and each class session is critical to your success in this course (**you begin with 60 attendance points and will lose 30 points for each absence**). Three or more absences can result in not passing this course. The student will be responsible for all work missed during absences. Any **excused Absence** must have written doctors signature for day missed.

ASSIGNMENT POLICY:
All students are expected to complete assignments on the due date shown on the Tentative Course Calendar. In order to receive an 'A' in the course, ALL assignments must be completed. Failure to complete any assignment will result in an automatic reduction of the course grade earned by one letter grade, regardless of the total number of points earned. Written work in which the use of the English language is not at an acceptable level for a university senior will be returned to the intern marked "Unacceptable" and a zero assigned.

MAKE-UP WORK POLICY:
The decision whether to accept make-up work is at the discretion of the instructor. **No make-up work will be accepted Dead Week or Finals Week.**

LATE WORK POLICY:
No late work will be accepted.

I have read the ELE 301 syllabus and I understand I am expected to fulfill all of the requirements of the course.

Name (Signature) and Date

last updated August 2018