Course Description:
The conditions of equilibrium of rigid bodies are studied in an engineering context. Four semester hours, three hours lecture, three hours lab per week. Lab fee required.

Prerequisites: PHY 241
Co-Requisites: MTH 234

Credits: 4 Hours (Lecture: 3 Hours, Laboratory: 1 Hours)

Instructor: Christopher J. Aul

Textbook: Vector Mechanics for Engineers: Statics
Authors: Beer, Johnston, Mazurek

Supplemental Materials: Engineering paper
Scientific calculator or better

Topics Covered:
Forces and moments in three dimensions analyzed with vector mechanics, centroids and centers of gravity, analysis of trusses, frames, and machines, beams, friction, moments of inertia of mass and area, virtual work.

Course Learning Outcomes
By the end of the course, a successful student will be able to:
1. Draw a complete free-body diagrams describing position of forces and moments in terms of vector components in two and three dimensions. (SO-c)
2. Apply appropriate equilibrium equations on a free-body diagram. (SO-e)
3. Work in teams to solve equilibrium problems discussed in class. (SO-g)
4. Determine resultant forces for a system acted upon by outside point and distributed forces. (SO-a)
5. Translate systems of forces and moments to equivalent systems. (SO-a)
6. Calculate forces in trusses and frames under equilibrium. (SO-e)
7. Find internal forces of a structure or system in equilibrium. (SO-e)
8. Analyze static systems that include forces from friction. (SO-e)
9. Calculate the centroids and centers of gravity for particles with an arbitrary shape. (SO-a)
10. Determine moment of inertia for a simple area. (SO-a)
11. Apply parallel-axis theorem to find moment of inertia for a complicated area. (SO-a)
12. Apply the basic method of virtual work to solve equilibrium problems. (SO-e)
Student Outcomes
Graduates of the program will:
(a) an ability to apply knowledge of mathematics, science and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability
(d) an ability to function on multidisciplinary teams
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of professional and ethical responsibility
(g) an ability to communicate effectively
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context
(i) a recognition of the need for, and an ability to engage in life-long learning
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
Course Outline:

EGR/PHY 250.001 & 250L.020 – Fall 2017

Engineering Statics

Department of Physics and Astronomy, Stephen F. Austin State University

Instructor: Christopher J. Aul, PhD
Email: aulcj@sfasu.edu
Office: 322E Miller Science
Phone: 936-468-1512

Office Hours: MW 9-9:50am, TR 9am-12pm, or by appointment
Class Meetings: MWF 10:00-10:50 AM & Mon 2:30-5:20 PM, Room 323 Miller Science Building
Course Home Page: http://d2l.sfasu.edu

Course Description
The conditions of equilibrium of rigid bodies are studied in an engineering context. Topics include: Forces and moments in three dimensions analyzed with vector mechanics, centroids and centers of gravity, analysis of trusses, frames, and machines, beams and cables, friction, moments of inertia of mass and area. Four semester hours, three hours lecture, three hours lab per week. Prerequisite: MTH 234 (Calculus II) and PHY 241 (Technical Physics I)

Text and Materials
Vector Mechanics for Engineers: Statics
Beer, Johnston, Mazurek

It is necessary that you acquire this edition of the text. Homework and reading will be assigned assuming the student has this text. Hard copies of homework assignments not be handed out to the student.

Other materials needed in the course:

Engineering paper that is grid ruled (assignment submission)
Scientific calculator or better (for exams and homework)
Ruler, compass, any other drafting tools for FBD sketches

Grading Policy

Exam 1 15%
Exam 2 15%
Exam 3 15%
Homework & Assignments 25%
Class Presentations 10%
Final Exam 20%

Letter grades are based on the following ranges:

A 90.0 – 100% B 80.0 - 89.9% C 70.0 - 79.9% D 60.0 - 69.9% F < 60.0%

The grade is based on three mid-term exams, one comprehensive final exam, homework which will be assigned in class, as well as in-class assignments. Exams will be graded on a 100 point scale, including the final, and homework will be averaged with in-class assignments for the final 25% of your grade.
Attendance Policy
Attendance will be taken at the beginning of class electronically, on paper, or visually. If you have 3 unexcused absences then your final grade will be reduced one letter grade. If you have 4 unexcused absences, you will receive an “F” in the course. A written and signed notice is required for an excused absence within three class days of the absence. To make sure that you are going to arrive to class on time you can set your watch here: http://www.time.gov/.

Students who miss class without approval of their instructor will receive a grade of zero on the missed assignment. Authorized absences must be approved by your instructor in advance of the absence, unless you have an emergency or illness. Make-up work must be completed outside of normal class hours within one week following an excused absence. It is your responsibility to see your instructor and make arrangements for make-up work if you have an excused absence.

Course Requirements
Exams
There will be three mid-term exams and a final, each covering a specific set of lecture, text, and homework material that will be communicated to the student in class. The final exam will be comprehensive to the material covered in the course. The tentative dates of these exams are listed in the course outline shown in this document. Students will have one week after each exam to review the exams and discuss the grades. No make-up exams will be given except in the case of an excused absence. An official written notice is required for an excused absence within three days of the exam. Any makeup exam must be taken within three days of the missed exam. The style of exam as well as allowed materials for the four exams will be communicated to the student in-class.

Homework Assignments
Homework will be assigned from the required text for the course. Homework assignments will be given to the student in class along with the due dates. When completing homework, the following guidelines must be followed:
- Always restate the problem and draw a diagram if needed
 - Label your engineering sketch neatly with given and unknown values
- Make sure to outline what values are given and the values you are trying to solve for
- Use engineering-styled paper that is grid ruled
- Use only one side of the paper (typically the side facing you on the pad)
- Include your name and page number on each page
- Use a ruler to set up your diagrams or in drawing elements
- Show the progression of your solution, clearly identify appropriate units when necessary
- Indicate final answers by placing a surrounding box, don’t forget the units!!
- Staple all of your papers together for submission

The above criteria, as well as accuracy of the information, will be used to grade your homework. Treat this as if I am your client and you need to impress me with your engineering calculations. Homework is due at the times presented in class. No late homework will be accepted unless you have an excused absence or delay. A homework notebook should be kept and will be turned in at the time of each exam. The homework notebook will be assessed for NEATNESS and COMPLETENESS. Do not skip working out problems as if you are missing problems your notebook grade will suffer.

In Class Assignments and Presentations
All in class assignments must be completed by the end of the class period. This may include working out example or homework problems on the board or separate assignments given throughout the class. The student will also be asked to present completed work to the rest of the fellow students in a “flipped class” manner. This is done to assess the communication and presentation skills of the student. The presentation ability of the student will graded and assigned a score that comprises 10% of the final grade. Other in-class assignments and participation will be averaged with the homework (submitted and notebook) to give 25% of your final grade. It is the discretion of the instructor to grant additional time if deemed necessary.
Email Communication
All official course communication will be made using your SFA email account. You must use your SFA email account for all communications. You will be notified via your SFA email account about grades and attendance. You can look up your SFA email account or setup email forwarding using this link: http://www.sfasu.edu/mysfa/o365/forwarding-email/

It is important to practice good email communications in college courses. Use "EGR 250" in the subject of your email messages. Use complete sentences and capitalization when appropriate. The body of your email messages should begin with your instructor's name and end with your name.

Classroom Policies
For the benefit of your fellow students and your instructor, you are expected to practice common courtesy with regard to all course interactions. For example:

□ Be considerate toward your classmates and instructor and arrive to class on time.
□ Do not leave class early and do not rustle papers in preparation to leave before class is dismissed.
□ Avoid classroom distractions. Be attentive in class: stay awake, do not read newspapers, etc.
□ If you are late to class or must leave early please inform your instructor in advance (enter or leave quietly, don't walk across the front of the classroom (use the side aisles) and don't walk in front of the projector).
□ Cell phones, pagers and other communication devices must be turned off during class.
□ Play well with others. Be kind and respectful to your fellow students and your teachers.

Academic Integrity (A-9.1)
Collaboration on examinations, in class assignments, and homework assignments is forbidden except where specifically specified as "Team" activities. For example, homework assignments can be worked on as a team but must be completed separately. In general, one team may not collaborate with another team on "Team" activities. Students violating this policy will be subject to procedures described in the Stephen F. Austin State University Policies and Procedures Manual. Academic integrity is a responsibility of all university faculty and students. Faculty members promote academic integrity in multiple ways including instruction on the components of academic honesty, as well as abiding by university policy on penalties for cheating and plagiarism.

Definition of Academic Dishonesty
Academic dishonesty includes both cheating and plagiarism. Cheating includes but is not limited to (1) using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class; (2) the falsification or invention of any information, including citations, on an assigned exercise; and/or (3) helping or attempting to help another in an act of cheating or plagiarism. Plagiarism is presenting the words or ideas of another person as if they were your own. Examples of plagiarism are (1) submitting an assignment as if it were one's own work when, in fact, it is at least partly the work of another; (2) submitting a work that has been purchased or otherwise obtained from an Internet source or another source; and (3) incorporating the words or ideas of an author into one's paper without giving the author due credit.

Please read the complete policy at http://www.sfasu.edu/policies/academic_integrity.asp

Withheld Grades - Semester Grades Policy (A-54)
Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically
become an F and will be counted as a repeated course for the purpose of computing the grade point average.

Students with Disabilities
To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices/.

Student Code of Conduct: Policy 10.4
Classroom behavior should not interfere with the instructor’s ability to conduct the class or the ability of other students to learn from the instructional program. Unacceptable or disruptive behavior will not be tolerated. Students who disrupt the learning environment may be asked to leave class and may be subject to judicial, academic or other penalties. This policy applies to all instructional forums, including electronic, classroom, labs, discussion groups, field trips, etc. The instructor shall have full discretion over what behavior is appropriate/inappropriate in the classroom. Students who do not attend class regularly or who perform poorly on class projects/exams may be referred to the iCare: Early Alert Program at SFA. Information regarding the iCare program is found at https://www.sfasu.edu/judicial/earlyalert.asp or call the office at 936-468-2703.

Course Learning Outcomes
By the end of the course, a successful student will be able to:

1. Draw a complete free-body diagrams describing position of forces and moments in terms of vector components in two and three dimensions. (SO-c)
2. Apply appropriate equilibrium equations on a free-body diagram. (SO-e)
3. Work in teams to solve equilibrium problems discussed in class. (SO-g)
4. Determine resultant forces for a system acted upon by outside point and distributed forces. (SO-a)
5. Translate systems of forces and moments to equivalent systems. (SO-a)
6. Calculate forces in trusses and frames under equilibrium. (SO-e)
7. Find internal forces of a structure or system in equilibrium. (SO-e)
8. Analyze static systems that include forces from friction. (SO-e)
9. Calculate the centroids and centers of gravity for particles with an arbitrary shape. (SO-a)
10. Determine moment of inertia for a simple area. (SO-a)
11. Apply parallel-axis theorem to find moment of inertia for a complicated area. (SO-a)
12. Apply the basic method of virtual work to solve equilibrium problems. (SO-e)

General Education Core Curriculum Objectives/Outcomes (EEO)
This course is not included in the general education core curriculum. Therefore, please see the learning outcomes above rather than any Exemplary Educational Objectives (EEOs).
EGR/PHY 250 – Engineering Statics Class Schedule

Course schedule is *tentative* and subject to change depending on pace of the class. Homework will be assigned based on material covered in class and in the assigned reading. Homework and due dates will be given in class.

<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1 8/28/2017</td>
<td>Introduction, Fundamentals Lab Session from 2:30-5:20pm</td>
<td>1.1-1.3</td>
</tr>
<tr>
<td>W</td>
<td>2 8/30/2017</td>
<td>Units, Problem Solving Methods</td>
<td>1.3-1.6</td>
</tr>
<tr>
<td>F</td>
<td>3 9/1/2017</td>
<td>Addition of Planar Forces</td>
<td>2.1</td>
</tr>
<tr>
<td>M</td>
<td>4 9/4/2017</td>
<td>Adding Forces by Components Lab Session, 2:30-5:20pm</td>
<td>2.2</td>
</tr>
<tr>
<td>W</td>
<td>5 9/6/2017</td>
<td>Forces and Equilibrium in a Plane</td>
<td>2.3</td>
</tr>
<tr>
<td>F</td>
<td>6 9/8/2017</td>
<td>Adding Forces in Space</td>
<td>2.4</td>
</tr>
<tr>
<td>M</td>
<td>7 9/11/2017</td>
<td>Forces and Moments Lab Session, 2:30-5:20pm</td>
<td>3.1</td>
</tr>
<tr>
<td>W</td>
<td>8 9/13/2017</td>
<td>Forces and Moments (cont.)</td>
<td>3.1</td>
</tr>
<tr>
<td>F</td>
<td>9 9/15/2017</td>
<td>Moment of a Force about an Axis</td>
<td>3.2</td>
</tr>
<tr>
<td>M</td>
<td>10 9/18/2017</td>
<td>Moment of a Force about an Axis (cont.) Lab Session, 2:30-5:20pm</td>
<td>3.2</td>
</tr>
<tr>
<td>W</td>
<td>11 9/20/2017</td>
<td>Couples and Force-Couple Systems</td>
<td>3.3</td>
</tr>
<tr>
<td>F</td>
<td>12 9/22/2017</td>
<td>Simplifying Systems of Forces</td>
<td>3.4</td>
</tr>
<tr>
<td>M</td>
<td>13 9/25/2017</td>
<td>Equilibrium of Rigid Bodies Lab Session, 2:30-5:20pm</td>
<td>4.1</td>
</tr>
<tr>
<td>W</td>
<td>14 9/27/2017</td>
<td>Two Special Cases (Equilibrium)</td>
<td>4.2</td>
</tr>
<tr>
<td>F</td>
<td>15 9/29/2017</td>
<td>Equilibrium in Three Dimensions</td>
<td>4.3</td>
</tr>
<tr>
<td>M</td>
<td>16 10/2/2017</td>
<td>Planar Centers of Gravity and Centroids</td>
<td>5.1</td>
</tr>
<tr>
<td>W</td>
<td>17 10/4/2017</td>
<td>Planar Centers of Gravity and Centroids (cont.)</td>
<td>5.1</td>
</tr>
<tr>
<td>F</td>
<td>18 10/6/2017</td>
<td>Further Considerations of Centroids</td>
<td>5.2</td>
</tr>
<tr>
<td>M</td>
<td>19 10/9/2017</td>
<td>Further Considerations of Centroids (cont.) Lab Session, 2:30-5:20pm</td>
<td>5.2</td>
</tr>
<tr>
<td>W</td>
<td>20 10/11/2017</td>
<td>Additional Applications of Centroids</td>
<td>5.3</td>
</tr>
<tr>
<td>F</td>
<td>21 10/13/2017</td>
<td>Additional Applications of Centroids (cont.)</td>
<td>5.3</td>
</tr>
<tr>
<td>M</td>
<td>22 10/16/2017</td>
<td>Analysis of Trusses Lab Session, 2:30-5:20pm</td>
<td>6.1</td>
</tr>
<tr>
<td>W</td>
<td>23 10/18/2017</td>
<td>Analysis of Trusses (cont.)</td>
<td>6.1</td>
</tr>
<tr>
<td>F</td>
<td>24 10/20/2017</td>
<td>Other Truss Analyses</td>
<td>6.2</td>
</tr>
<tr>
<td>M</td>
<td>25 10/23/2017</td>
<td>Other Truss Analyses (cont.)</td>
<td>6.2</td>
</tr>
<tr>
<td>W</td>
<td>26 10/25/2017</td>
<td>Frames</td>
<td>6.3</td>
</tr>
<tr>
<td>F</td>
<td>27 10/27/2017</td>
<td>Frames (cont.)</td>
<td>6.3</td>
</tr>
<tr>
<td>M</td>
<td>28 10/30/2017</td>
<td>Internal Forces in Members Lab Session, 2:30-5:20pm</td>
<td>7.1</td>
</tr>
<tr>
<td>W</td>
<td>29 11/1/2017</td>
<td>Internal Forces in Members (cont.)</td>
<td>7.1</td>
</tr>
<tr>
<td>F</td>
<td>30 11/3/2017</td>
<td>Beams</td>
<td>7.2</td>
</tr>
<tr>
<td>M</td>
<td>31 11/6/2017</td>
<td>Beams (cont.)</td>
<td>7.2</td>
</tr>
<tr>
<td>W</td>
<td>32 11/8/2017</td>
<td>Beams (cont.)</td>
<td>7.2</td>
</tr>
<tr>
<td>F</td>
<td>33 11/10/2017</td>
<td>Laws of Dry Friction</td>
<td>8.1</td>
</tr>
<tr>
<td>M</td>
<td>34 11/13/2017</td>
<td>Laws of Dry Friction (cont.)</td>
<td>8.1</td>
</tr>
<tr>
<td>W</td>
<td>35 11/15/2017</td>
<td>The Laws of Dry Friction (cont.)</td>
<td>8.1</td>
</tr>
<tr>
<td>F</td>
<td>36 11/17/2017</td>
<td>Moments of Inertia of Areas</td>
<td>9.1</td>
</tr>
<tr>
<td>Class</td>
<td>Date</td>
<td>Topic</td>
<td>Reading</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>M</td>
<td>11/20/2017</td>
<td>Thanksgiving Holiday - No Class</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>11/22/2017</td>
<td>Thanksgiving Holiday - No Class</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>11/24/2017</td>
<td>Thanksgiving Holiday - No Class</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>11/27/2017</td>
<td>Moments of Inertia of Areas (cont.)</td>
<td>9.1</td>
</tr>
<tr>
<td>W</td>
<td>11/29/2017</td>
<td>Parallel-Axis Theorem and Composite Areas</td>
<td>9.2</td>
</tr>
<tr>
<td>F</td>
<td>12/1/2017</td>
<td>Parallel-Axis Theorem and Composite Areas (cont.)</td>
<td>9.2</td>
</tr>
<tr>
<td>M</td>
<td>12/4/2017</td>
<td>The Basic Method (Virtual Work) Lab Session, 2:30-5:20pm</td>
<td>10.1</td>
</tr>
<tr>
<td>W</td>
<td>12/6/2017</td>
<td>The Basic Method (Virtual Work) Lab Session, 2:30-5:20pm</td>
<td>10.1</td>
</tr>
<tr>
<td>F</td>
<td>12/8/2017</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/13/2017</td>
<td>Final Exam, Comprehensive, 10:30am-12:30pm</td>
<td></td>
</tr>
</tbody>
</table>