ELE 301.501 Teaching Elementary Science

Semester: Fall 2010
Date/Time: Online
Location: Online
Credit: 2 hours

Instructor: Dr. Larry D. Ponder
Office: 209AA
Office Phone: 936-468-1603
Office Hours: M T W – 8:00-10:00 and/or by appt.
Email: via Blackboard or ponderl@sfasu.edu

Note: *If this is your first online course, (Technology) Training is recommended for successful participation in this course. On-campus training is offered by OIT. Proof of computer literacy will be required in order for you to enter the course.*

1. COURSE OVERVIEW

1A. Course Description
This course is designed to help teachers become more competent in the development and use of hands-on, inquiry-based science activities. It is a workshop course based on the process skills, materials and goals of National Science curriculum programs. (from Stephen F. Austin State University General Bulletin 2004-2005).

MISSION: Through active participation in classroom projects and outside field investigations the mission of this class, and that of the College Of Education, is to prepare competent, successful, caring and enthusiastic professionals dedicated to responsible service, leadership and continued professional and intellectual development.

1B. Program Learning Outcomes
The purpose of this course is to prepare professional educators who positively impact learning for all students. It is our mission to provide students a foundation for success, a passion for learning and a commitment to responsible global citizenship in a community dedicated to teaching, research, creativity and service. This class will model how to collaborate with external partners to enhance students' knowledge, skills, and dispositions, and to influence the ongoing exchange of ideas for mutual benefit. Knowledge is gained in many ways. This necessitates that educators utilize various strategies from direct teaching to inquiry methods, from individual to small group and large group formats. Student learning is a process of continuous transformation, discovery, hands-on experiences and problem solving. It should be grounded in rich first hand, field based experiences, scientific research, and best practices. In this class it will be important to promote a safe and productive physical learning environment that is.
supportive of individual differences. In summary, it is our objective to create a community of learners engaged in active inquiry, collaborative exploration, and supportive interactions.

1C. Student Learning Outcomes

Competency 020 (Science Instruction)
The teacher uses knowledge of science content and methods to plan effective, engaging, and safe instruction and to assess learning. The beginning teacher:

- Designs and adapts curricula and selects science content to address the interests, knowledge, abilities, experiences, and needs of all children.
- Plans and implements instruction that prompts all children's engagement in processes of scientific inquiry (e.g., asking a scientific question; formulating a testable hypothesis; selecting appropriate equipment and technology to gather information related to the hypothesis; making observations and collecting data; analyzing, evaluating, and communicating data to find data trends and patterns and make inferences; communicating and defending a valid conclusion).
- Uses situations from children's daily lives to develop instruction that investigates how science can be used to make informed decisions.
- Creates, implements, and enforces rules and safety procedures to promote and maintain a safe learning environment during laboratory and field activities.
- Provides laboratory space and equipment for all students, including those with special needs.
- Designs science instruction that includes the contributions of individuals from a variety of cultures.
- Promotes children's understanding that scientific ideas and explanations must be consistent with observational and experimental evidence.
- Uses a variety of formal and informal assessments and knowledge of the Texas Essential Knowledge and Skills (TEKS) in science to determine children's progress and needs and to help plan instruction for individual children, including English Language Learners.
- Develops procedures for assessing child participation in and understanding of the inquiry process.
- Understands the implications of stages of child growth and development for designing and implementing effective learning experiences in science and selects effective, developmentally appropriate instructional practices, activities, technologies, and materials to promote children's scientific knowledge and skills.

Competency 021 (Physical Science)
The teacher understands the fundamental concepts, principles, and processes of physical science. The beginning teacher:

- Understands properties of objects and materials and selects appropriate procedures and tools for observing and recording them (e.g., size, shape, temperature, hardness, mass, conduction, density).
- Understands concepts of force and motion and describes the motion of an object subject to an unbalanced force (e.g., a push or a pull).
- Understands basic concepts of heat, light, electricity, and magnetism.
- Applies properties of fundamental forces (e.g., push or pull, friction, gravity, electric force, magnetic force) to analyze common situations and objects (e.g., toys, playground equipment).
- Describes and analyzes changes in the states of matter caused by the addition or removal of heat energy.
- Understands conservation of energy and energy transformations and analyzes how energy is transformed from one form to another (e.g., mechanical, sound, heat, light, chemical, electrical) in a variety of everyday situations.
- Understands how the systems model can be used as a conceptual framework to organize, unify, and connect the common themes of physical science to other sciences and technology.
- Analyzes systems in physical science (e.g., the interactions of the parts of a toy car or a simple pendulum) in terms of constancy, change, cycles, structure, and processes.
- Engages in the process of scientific inquiry in physical science (e.g., asking a scientific question; formulating a testable hypothesis; selecting appropriate equipment and technology to gather information related to the hypothesis; making observations and collecting data; analyzing, evaluating, and communicating data to find data trends and patterns and make inferences; communicating and defending a valid conclusion).
- Uses a variety of tools, equipment, technology, and techniques to access, gather, store, retrieve, organize, and analyze data in physical science.
- Demonstrates knowledge of the concepts of precision, accuracy, and error with regard to reading and recording numerical data from a scientific instrument in the context of physical science investigations.
- Organizes, displays, and communicates physical science data in a variety of ways (e.g., collections, charts, tables, written reports) using appropriate technology.
- Understands procedures for the appropriate storage, handling, use, disposal, care, and maintenance of chemicals, materials, and equipment in physical science.

Competency 022 (Life Science)
The teacher understands the fundamental concepts, principles, and processes of life science. The beginning teacher:

- Understands that living systems have different structures to perform different functions.
- Understands and describes stages in the life cycle of common plants and animals.
- Understands that organisms have basic needs.
The teacher understands the fundamental concepts, principles, and processes of earth and space science. The beginning teacher:

- Demonstrates knowledge of adaptive characteristics and explains how adaptations influence the survival of populations or species.
- Understands that organisms respond to internal or external stimuli and analyzes the role of internal and external stimuli in the behavior of organisms.
- Describes the processes by which plants and animals reproduce and explains how hereditary information is passed from one generation to the next.
- Compares and contrasts inherited traits and learned characteristics.
- Understands relationships between organisms and the environment and describes ways in which living organisms depend on each other and on the environment to meet their basic needs.
- Identifies organisms, populations, or species with similar needs and analyzes how they compete with one another for resources.
- Understands how the systems model can be used as a conceptual framework to organize, unify, and connect the common themes of life science to other sciences and technology.
- Applies the systems model to analyze systems in life science (e.g., the interactions of the parts of a plant or an animal) in terms of constancy, change, cycles, structure, and processes.
- Engages in the process of scientific inquiry in life science (e.g., asking a scientific question; formulating a testable hypothesis; selecting appropriate equipment and technology to gather information related to the hypothesis; making observations and collecting data; analyzing, and evaluating data to find data trends and patterns and make inferences; communicating and defending a valid conclusion).
- Uses a variety of tools, equipment, technology, and techniques to access, gather, store, retrieve, organize, and analyze data in life science.
- Demonstrates knowledge of the concepts of precision, accuracy, and error with regard to reading and recording numerical data from a scientific instrument in the context of life science.
- Organizes, displays, and communicates life science data in a variety of ways (e.g., collections, charts, tables, written reports) using appropriate technology.
- Understands procedures for the appropriate storage, handling, use, disposal, care, and maintenance of chemicals, materials, specimens, and equipment and demonstrates ethical care and treatment of organisms and specimens.

Competency 023 (Earth and Space Science)

The teacher understands the fundamental concepts, principles, and processes of earth and space science. The beginning teacher:

- Understands and describes the properties and uses of earth materials (e.g., rocks, soils, water, atmospheric gases).
- Demonstrates knowledge of characteristics of weather, changes in weather, and tools for making weather measurements.
- Understands forces and processes that change the surface of Earth (e.g., glaciers, earthquakes, weathering).
- Understands and describes characteristics of the sun, moon, and stars.
- Demonstrates knowledge of objects in the sky and their characteristics (e.g., the sun as Earth’s major energy source, position of the planets in relation to the sun).
- Analyzes the consequence of the moon’s orbit around Earth (e.g., phases of the moon) and Earth’s orientation and movement around the sun (e.g., day and night, the seasons).
- Understands how the systems model can be used as a conceptual framework to organize, unify, and connect the common themes of earth and space science to other sciences and technology.
- Applies the systems model to analyze systems in earth and space science (e.g., the ocean, the atmosphere) in terms of constancy, change, cycles, structure, and processes.
- Engages in the process of scientific inquiry in earth and space science (e.g., asking a scientific question; formulating a testable hypothesis; selecting appropriate equipment and technology to gather information related to the hypothesis; making observations and collecting data; analyzing, and evaluating data to find data trends and patterns and make inferences; communicating and defending a valid conclusion).
- Uses a variety of tools, equipment, technology, and techniques to access, gather, store, retrieve, organize, and analyze data in earth and space science.
- Demonstrates knowledge of the concepts of precision, accuracy, and error with regard to reading and recording numerical data from a scientific instrument in the context of earth and space science.
- Organizes, displays, and communicates data in a variety of ways (e.g., collections, charts, tables, written reports) using appropriate technology in the context of earth and space science.
- Understands procedures for the appropriate storage, handling, use, disposal, care, and maintenance of chemicals, materials, and equipment in earth and space science.

2. COURSE DETAILS

2A. Text and Materials

1. Required Texts: (Can be ordered from SFA bookstore).
or
(Textbook is available for sale at the following link: http://www.mypearsonstore.com/bookstore/
B. TEKS (Texas Essential Skills and Knowledge) - Science Curriculum for the State of Texas. You
can acquire these on the web. http://ritter.tea.state.tx.us/rules/tac/chapter112/index.html
C. Texas Safety Standards: Kindergarten through Grade 12. A guide to laws, rules, regulations, and
safety procedures for classroom, laboratory, and field investigations. (Charles A. Dana Center
funded by the Texas Education Agency.
http://www.utdanacenter.org/sciencetoolkit/safety/texas_safety.php
can be found on the web, are guidelines designed to ensure that all students graduate with the
science knowledge and intellectual abilities they will need to make effective decisions in their
everyday lives, participate in civic and cultural affairs, and become economically productive

2. Suggested Readings
A. Activities Integrating Mathematics and Science (AIMS); various volumes. (1981). Fresno, CA:
AIMS Education Foundation.
B. American Association for the Advancement of Science. (1993). Benchmarks for Science
Washington, DC: AAAS.
to Laws, Rules, Regulations, and Safety Procedures for Classroom, Laboratory, and Field
National Academy Press.
Press.

2B. Course Requirements
Requirements in this course are deadline driven. Each requirement has a posted due date. All work must be
submitted by MIDNIGHT (unless otherwise stated) on the due date. If you cannot meet the stated due date,
notify the professor immediately to help you determine if circumstances are extenuating and entitle you to an
extension (for the purpose of receiving credit for the Requirement). Late work will not receive credit. Written
work in which the use of the English language is not at an acceptable level for a senior student will be returned.
You will have one opportunity to correct mistakes and present acceptable level work. After that, you will
receive a grade for the submitted work. PLEASE NOTE: To complete this course, ALL requirements must be
completed and submitted.

Readings
It is suggested that reading assignments are paired with the keeping of a journal to record and
summarize thoughts during and after reading. The Questions for Reflection at the end of the chapter will guide
your thoughts and ideas following reading. Additionally, the myeducationlab online resource that comes with
your textbook has video clips and discussions listed and the end of each chapter. These will enhance your
reading experiences.

All submitted written work should use Times New Roman 12 pt. font, be double-spaced, have one inch
margins, and include a cover sheet that is not counted as a page for assignment length.
Please use Microsoft WORD or EXCEL for written work and projects.

Paper #1 (70 points) – due week 2
 Prior to the listing of the objectives in the Texas Essential Knowledge and Skills (TEKS) for science there are introductory sections. Read sections (1), (2), and (3) of the (a) Introduction for each of the grade K-6 science TEKS. Write a 1.5- 3 page paper where you discuss the similarities and differences.

Paper #2 (80 points) – due week 3
 In the introductory section of the TEKS for science, read section (4) of the (a) Introduction for each of the K-5 science TEKS. Write a 2-4 page paper relating what you learned about K-5 science learning outcomes.

Paper #3 (120 points) – due week 14
 This paper is to be a culmination of this class. Reread all of your other papers, reflections, and class discussions as you prepare your thoughts to compose this paper. This essay should summarize your learning during this class and will provide an opportunity for you to argue for what you have identified as the critical components and considerations for teaching science. The target length for this essay should be a minimum of 5 pages.

Reflection #1 (50 points) – due week 4
 Read section (4) of the (a) Introduction for the grade 6 science TEKS. Write a 1-3 paragraph reflection about your comparisons to the K-5 you wrote more extensively about for Paper #2.

Reflection #2 (50 points) – due week 5
 Following your reading of chapter 2 of the course text, narrow your thoughts to the sections concerning types of investigations in science. Read Objective 2 in each of the K-6 Science TEKS found in the section (b) knowledge and skills. Write a 1-3 paragraph reflection about your thoughts aligning the information from the text with the TEKS.

Reflection #3 (50 points) – due week 7
 Following the online discussion initiated by the professor that identifies the different interpretations of the 5E model of planning and teaching science, write a 1-3 paragraph reflection that describes your understandings. [NOTE* If timing aligns, the one time the class meets face-to-face, the discussion about 5E models will be initiated.]

Discussion #1 (20 points) – during week 2
 Following your reading of chapter 1 of the text, log on to Blackboard and participate in a discussion of your reading. The discussion may follow the reflective questions from the end of the chapter or from your own thoughts.

Discussion #2 (20 points) – during week 3
 Use Blackboard to participate in an online discussion aligned to the content of the paper you wrote during week 2.

Discussion #3 (20 points) – during week 4
 Use Blackboard to participate in an online discussion aligned to the content of the paper you wrote during week 3.
Discussion #4 (20 points) – during week 6
Use Blackboard to participate in an online discussion aligned the three types of investigations: descriptive, experimental, and comparative.

Discussion #5 (20 points) – during week 7
Use Blackboard to participate in an online discussion aligned to the 5E model for planning and teaching science.

Discussion #6 (20 points) – during week 13
Following the completion of your Lesson Plans Projects, use Blackboard to participate in an online discussion about the process and the lessons you compiled.

Lesson Plans Project #1 (120 points) – due week 10
The textbook has a section at the back with sample lessons and discussions pertaining to Physical Science concepts. Not all of the concepts are addressed. As a classroom teacher, there will be times when the concepts you need to teach may not be in the textbook resources. Utilize the internet and any other resources you have available to plan a series of lessons to teach the concept Physical Properties of Matter. For this project you will plan five lessons. Each lesson will be focused on addressing one of the Es from the 5E model. For example, one entire lesson will be focused on providing engagement for learning the concept. (Contact the professor for additional assistance as needed for clarification and/or ideas.)

Lesson Plans Project #2 (120 points) – due week 11
The textbook has a section at the back with sample lessons and discussions pertaining to Earth and Space Science concepts. Not all of the concepts are addressed. As a classroom teacher, there will be times when the concepts you need to teach may not be in the textbook resources. Utilize the internet and any other resources you have available to plan a series of lessons to teach the concept Forces that Shape the Earth. For this project you will plan five lessons. Each lesson will be focused on addressing one of the Es from the 5E model. For example, one entire lesson will be focused on providing engagement for learning the concept. (Contact the professor for additional assistance as needed for clarification and/or ideas.)

Lesson Plans Project #3 (120 points) – due week 12 ***
The textbook has a section at the back with sample lessons and discussions pertaining to Life Science concepts. Not all of the concepts are addressed. As a classroom teacher, there will be times when the concepts you need to teach may not be in the textbook resources. Utilize the internet and any other resources you have available to plan a series of lessons to teach the concept Habitats. For this project you will plan five lessons. Each lesson will be focused on addressing one of the Es from the 5E model. For example, one entire lesson will be focused on providing engagement for learning the concept. (Contact the professor for additional assistance as needed for clarification and/or ideas.)

***You have the option of substituting Project #3 for participation in the Wetlands Project with the face-to-face class here in Nacogdoches. Additional information will be provided as the time for that participation arrives. If you choose to participate in that project, it will count in place of Project #3.
2C. Course Calendar

<table>
<thead>
<tr>
<th>Week</th>
<th>Week of:</th>
<th># of Days</th>
<th>Task(s):</th>
</tr>
</thead>
</table>
| 1 | Aug 30 | 5 | - Purchase text.
- Download, print, and read the K-5 and 6-8 Science TEKS. |
| 2 | Sep 7 | 4 | - Paper #1 (K-6 TEKS Introductory Sections 1, 2, 3)
- Read Chapter 1.
- Online Discussion #1 (Chapter 1) |
| 3 | Sep 13 | 5 | - Paper #2 (K-5 TEKS Introductory Sections 4)
- Online Discussion #2 (Paper #1 content) |
| 4 | Sep 20 | 5 | - Online Discussion #3 (Paper #2 content)
- Reflection #1 (Compare/contrast Section 4 of grade 6 with K-5) |
| 5 | Sep 27 | 5 | - Read Chapter 2.
- Reflection #2 (Types of Investigations and the TEKS) |
| 6 | Oct 4 | 5 | - Online Discussion #4 (Types of Investigations and TEKS)
- Read Chapter 3.
- Read Chapter 4.
- Read Chapter 5. |
| 7 | Oct 11 | 5 | - Online Discussion #5 (5E Model – Differing Interpretations)
- Reflection #3 (5E Model/Models) |
| 8 | Oct 18 | 5 | - Read Chapter 6.
- Read Chapter 7. |
| 9 | Oct 25 | 5 | - Read Chapter 10. |
| 10 | Nov 1 | 5 | - Lesson Plans Project #1 (Physical Properties of Matter) |
| 11 | Nov 8 | 5 | - Lesson Plans Project #2 (Forces that Shape the Earth) |
| 12 | Nov 15 | 5 | - Lesson Plans Project #3 (Habitats) |
| 13 | Nov 22 | 2 | - Online Discussion #6 (Lesson Planning) |
| 14 | Nov 29 | 5 | - Reread papers, reflections, and online discussions.
- Paper #3 (Summary of Learning). |
| 15 | Dec 6 | 5 | - |
| | | | Finals Week: Dec 13 – Dec 17 |

2D. Grading Policy

Grading Scale:

<table>
<thead>
<tr>
<th>Grade Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100%</td>
<td>A</td>
</tr>
<tr>
<td>80-89%</td>
<td>B</td>
</tr>
<tr>
<td>70-79%</td>
<td>C</td>
</tr>
<tr>
<td>60-69%</td>
<td>D</td>
</tr>
<tr>
<td>< 60%</td>
<td>F</td>
</tr>
<tr>
<td>Assignment</td>
<td>Due</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Paper #1</td>
<td>9/10/10</td>
</tr>
<tr>
<td>Paper #2</td>
<td>9/17/10</td>
</tr>
<tr>
<td>Paper #3</td>
<td>12/3/10</td>
</tr>
<tr>
<td>Reflection #1</td>
<td>9/24/10</td>
</tr>
<tr>
<td>Reflection #2</td>
<td>10/1/10</td>
</tr>
<tr>
<td>Reflection #3</td>
<td>10/15/10</td>
</tr>
<tr>
<td>Discussion #1</td>
<td>9/8/10</td>
</tr>
<tr>
<td>Discussion #2</td>
<td>9/15/10</td>
</tr>
<tr>
<td>Discussion #3</td>
<td>9/22/10</td>
</tr>
<tr>
<td>Discussion #4</td>
<td>10/6/10</td>
</tr>
<tr>
<td>Discussion #5</td>
<td>10/13/10</td>
</tr>
<tr>
<td>Discussion #6</td>
<td>11/23/10</td>
</tr>
<tr>
<td>Lesson Plan Project #1</td>
<td>11/5/10</td>
</tr>
<tr>
<td>Lesson Plan Project #2</td>
<td>11/12/10</td>
</tr>
<tr>
<td>Lesson Plan Project #3</td>
<td>11/19/10</td>
</tr>
<tr>
<td>Final Exam</td>
<td>12/15/10</td>
</tr>
<tr>
<td>TOTAL POINTS POSSIBLE</td>
<td></td>
</tr>
</tbody>
</table>

Late Work: Late work receives no credit unless there is approval from instructor. However, ALL assignments must be completed and submitted before you receive your earned grade.

No make-up work will be accepted Dead Week or Finals Week.

Some ASSIGNMENTS may be subject to editing and resubmission at the discretion of the instructor. In this event, the resubmitted work is due no later than one week after it is received from the instructor.

2E. Attendance Policy
This is an online course. You are responsible for participating in DISCUSSIONS. Attendance and participation in DISCUSSIONS will be noted and grades assigned according to the syllabus. Daily attendance is expected. This means you are to login to the class at least once a day. Check the Homepage, announcements, and Blackboard email EVERY day. Important messages, changes, and updates can be found.

On-Campus Attendance
There will tentatively be one face-to-face class meeting when you are scheduled to come to class for assessment(s). More information will be given when these dates are set.

2F. Participation
You are expected to fully participate in all course activities. Class participation is an integral part of learning, especially in an online course. You must read all ASSIGNMENTS and be prepared to participate in all DISCUSSION forums, and other class activities.

Ask questions!! The DISCUSSION Forum is where candidates go for help. “Ask Three Before Me” is a great teaching tool/strategy. Classmates are encouraged to “ask three” friends their questions before turning to the teacher. Chances are someone in the class will be able to answer your question. If not, then certainly the teacher
intervenes and answers the question for everyone. In this course you are asked to use this topic for questions you might have: where to locate something, how to post a discussion message, or any other question or comment you might have. Rest assured the professor will jump in with the answer if classmates do not. This is a tool you may want to use in your own classroom. It proves highly effective in building community as well as helping the teacher stay focused on working with individuals, small groups, or the whole class. Please use this tool. You will find it very effective. When initiating a **DISCUSSION**, place the topic of your message in the subject line. Responders choose “Reply” to comment.

2G. Course Evaluations

Near the conclusion of each semester, students in the College of Education (COE) electronically evaluate courses taken within the COE. Evaluation data is used for a variety of important purposes including:

- course and program improvement, planning, and accreditation;
- instruction evaluation purposes; and
- making decisions on faculty tenure, promotion, pay, and retention.

Please know that the COE faculty is committed to excellence in teaching and continued improvement. Therefore, your response is critical! As you evaluate this course, please be thoughtful, thorough, and accurate in completing the evaluation. Remember this is not an opportunity to whine and complain, but rather a time to reflect and offer solutions to problems to help each of us become better teachers, as well as provide positive feedback for what does work in the course.

In the COE, the course evaluation process has been simplified and is completed electronically through MySFA. Although the instructor will be able to view the names of students who complete the survey, all ratings and comments are confidential and anonymous. Comments are not available to the instructor until after final grades are posted.

3. UNIVERSITY POLICY

3A. Academic Integrity

(A-9.1) Academic integrity is a responsibility of all university faculty and students. Faculty members promote academic integrity in multiple ways including instruction on the components of academic honesty, as well as abiding by university policy on penalties for cheating and plagiarism.

Definition of Academic Dishonesty

Academic dishonesty includes both cheating and plagiarism. Cheating includes but is not limited to (1) using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class; (2) the falsification or invention of any information, including citations, on an assigned exercise; and/or (3) helping or attempting to help another in an act of cheating or plagiarism. Plagiarism is presenting the words or ideas of another person as if they were your own. Examples of plagiarism are (1) submitting an assignment as if it were one’s own work when, in fact, it is at least partly the work of another; (2) submitting a work that has been purchased or otherwise obtained from an Internet source or another source; and (3) incorporating the words or ideas of an author into one’s paper without giving the author due credit.

Please read the complete policy at http://www.sfasu.edu/policies/academic_integrity.asp

Academic dishonesty is an unacceptable mode of conduct and will not be tolerated in any form. All persons involved in academic dishonesty will be disciplined in accordance with University regulations and procedures. Discipline may include suspension or expulsion from the University.
3B. Acceptable Student Behavior
Classroom behavior should not interfere with the instructor’s ability to conduct the class or the ability of other students to learn from the instructional program (see the Student Conduct Code, policy D34.1). Unacceptable or disruptive behavior will not be tolerated. Students who disrupt the learning environment may be asked to leave class and may be subject to judicial, academic or other penalties. This prohibition applies to all instructional forums, including electronic, classroom, labs, discussion groups, field trips, etc. The instructor shall have full discretion over what behavior is appropriate/inappropriate in the classroom. Students who do not attend class regularly or who perform poorly on class projects/exams may be referred to the Early Alert Program. This program provides students with recommendations for resources or other assistance that is available to help SFA students succeed.

3C. Withheld Grades (WH)
Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average.

3D. Students with Disabilities
To obtain disability related accommodations and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, Room 325, (936) 468-3004/ (936) 468-1004 (TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. For additional information, go to http://www.sfasu.edu/disabilityservices/.

Nondiscrimination
No person shall, on the basis of race, color, religion, sex, age, national origin, handicap, or veteran status, be subjected to discrimination or be excluded from participation in or be denied the benefits of employment or any educational program or activity operated by Stephen F. Austin State University. (SFASU General Bulletin 2004-2005)